• Title/Summary/Keyword: Offshore Wind Power

Search Result 329, Processing Time 0.024 seconds

Analytical framework for natural frequency shift of monopile-based wind turbines under two-way cyclic loads in sand

  • Yang Wang;Mingxing Zhu;Guoliang Dai;Jiang Xu;Jinbiao Wu
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.167-178
    • /
    • 2024
  • The natural frequency shift under cyclic environmental loads is a key issue in the design of monopile-based offshore wind power turbines because of their dynamic sensitivity. Existing evidence reveals that the natural frequency shift of the turbine system in sand is related to the varying foundation stiffness, which is caused by soil deformation around the monopile under cyclic loads. Therefore, it is an urgent need to investigate the effect of soil deformation on the system frequency. In the present paper, three generalized geometric models that can describe soil deformation under two-way cyclic loads are proposed. On this basis, the cycling-induced changes in soil parameters around the monopile are quantified. A theoretical approach considering three-spring foundation stiffness is employed to calculate the natural frequency during cycling. Further, a parametric study is conducted to describe and evaluate the frequency shift characteristics of the system under different conditions of sand relative density, pile slenderness ratio and pile-soil relative stiffness. The results indicate that the frequency shift trends are mainly affected by the pile-soil relative stiffness. Following the relevant conclusions, a design optimization is proposed to avoid resonance of the monopile-based wind turbines during their service life.

Reduced Switch Count Topology of Current Flow Control Apparatus for MTDC Grids

  • Diab, Hatem Yassin;Marei, Mostafa Ibrahim;Tennakoon, Sarath B.
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1743-1751
    • /
    • 2016
  • The increasing demand for high voltage DC grids resulting from the continuous installation of offshore wind farms in the North Sea has led to the concept of multi-terminal direct current (MTDC) grids, which face some challenges. Power (current) flow control is a challenge that must be addressed to realize a reliable operation of MTDC grids. This paper presents a reduced switch count topology of a current flow controller (CFC) for power flow and current limiting applications in MTDC grids. A simple control system based on hysteresis band current control is proposed for the CFC. The theory of operation and control of the CFC are demonstrated. The key features of the proposed controller, including cable current balancing, cable current limiting, and current nulling, are illustrated. An MTDC grid is simulated using MATLAB/SIMULINK software to evaluate the steady state and dynamic performance of the proposed CFC topology. Furthermore, a low power prototype is built for a CFC to experimentally validate its performance using rapid control prototyping. Simulation and experimental studies indicate the fast dynamic response and precise results of the proposed topology. Furthermore, the proposed controller offers a real solution for power flow challenges in MTDC grids.

Development of simulation model for offshore wind power generation with MMC for HILS application (HILS 적용을 위한 해상풍력 계통 연계 MMC 모델 개발)

  • Shin, Dong-Cheol;Yoon, Jin-Woo;Lee, Dong-Myung
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.372-373
    • /
    • 2018
  • HVDC(High Voltage Direct Current)전력망은 발전소에서 생산한 교류를 직류로 변환한 이후 송전하여 부하에 가까운 전력변환기를 이용하여 교류로 변환한 후에 사용하는 방식이며, 전압형 HVDC에 MMC(Modular Multilevel Converter)가 널리 사용되고 있다. 본 논문에서는 MMC가 적용된 HVDC를 이용한 해상 풍력 계통 제어 성능을 테스트하기 위해 실시간 시뮬레이션 툴인 RT-Lab에 적용한 모델에 대해 설명하고자 한다.

  • PDF

According to the operating mode analysis loss of 3-Level NPC Inverter and T-type Inverter used in offshore wind power (해상 풍력 발전용 3-Level NPC 인버터와 T-type 인버터의 동작방식에 따른 손실 분석)

  • Kim, Han-Soo;Kim, Jeong-Heon;Hong, Seok-Jin;Shin, Soo-Cheol;Lee, Jong-Moo;Won, Chung-Yeun
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.421-422
    • /
    • 2013
  • 본 논문에서는 3-레벨의 NPC(Neutral Point Clamped) VSC와 T-type VSC를 시뮬레이션용 열 모델링 기법을 이용하여 스위칭과 도통 손실을 비교 분석하였다. 두 가지 토폴로지의 인버터동작과 회생동작에서의 주파수에 따른 효율을 시뮬레이션을 통하여 고찰 하였다.

  • PDF

Reactor design for LCL filter in 3 MW-class offshore wind power generator using FEM (FEM을 이용한 3MW-Class 해상풍력 발전기용 LCL 필터를 위한 리액터 설계)

  • Wang, Zhi-Ming;Kim, Jeong-Hum;Kim, Hyo-Seon;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.445-446
    • /
    • 2013
  • 최근 대규모 해상풍력단지 조성을 위한 프로젝트 등이 진행되고 있다. 매우 튼 전력을 생산하는 풍력발전기를 계통에 연계시키기 위해서는 du/dt 필터, LCL 필터 등의 요소가 반드시 필요하다. 이러한 필터 설계를 위해서는 선제작한 후 실제 실험을 통해 그적합성을 시험 받는 수밖에 없다. 작은 규모는 상관없지만 이렇게 큰 용량의 필터를 설계하기 위해서는 적지 않은 노력과 비용이 필요하다. 따라서 이러한 설계를 위해서는 많은 시뮬레이션 수단이 강구될 수 있는바 본 논문은 FEM 프로그램을 이용하여 LCL 필터용의 3상 리액터를 설계하고 그 효과를 검증하고자 한다.

  • PDF

Implementation of OPLA-RT based HILS system for developing MMC control algorithm of offshore wind power (해상 풍력 연계 MMC 제어 알고리즘 개발을 위한 OPLA-RT 기반의 HILS 구축)

  • Shin, Dong-Cheol;Yoon, Jin-Woo;Lee, Dong-Myung
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.414-415
    • /
    • 2019
  • 본 논문은 HVDC(High Voltage Direct Current)에 적용된 MMC(Modular Multilevel Converter)의 제어 알고리즘 개발을 위한 HILS(Hardware In the Loop Simulation)을 위한 모델링 및 HILS 시스템 구축 예를 보인다. 전력 계통, MMC, 풍력 발전 등의 HILS 적용 MATLAB/SIMULINK 모델 및 FPGA(Field Programmable Gate Array)를 이용한 제어기 개발 내용을 보인다. 시뮬레이션 모델과 FPGA 제어기를 이용하여 구축한 OPAL-RT 기반의 실험 결과를 보인다.

  • PDF

The efficient DC-link voltage design of the Type 4 wind turbine that satisfies HVRT function requirements (HVRT 기능 요구조건을 만족하는 Type 4 풍력 발전기의 효율적인 직류단 전압 설계)

  • Baek, Seung-Hyuk;Kim, Sungmin
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.399-407
    • /
    • 2021
  • This paper proposes the DC-link voltage design method of Type 4 wind turbine that minimizes power loss and satisfies the High Voltage Ride Through(HVRT) function requirements of the transmission system operator. The Type 4 wind turbine used for large-capacity offshore wind turbine consists of the Back-to-Back converter in which the converter linked to the power grid and the inverter linked to the wind turbine share the DC-link. When the grid high voltage fault occurs in the Type 4 wind turbine, if the DC-link voltage is insufficient compared to the fault voltage level, the current controller of the grid-side converter can't operate smoothly due to over modulation. Therefore, to satisfy the HVRT function, the DC-link voltage should be designed based on the voltage level of high voltage fault. However, steady-state switching losses increase further as the DC-link voltage increases. Therefore, the considerations should be included for the loss to be increased when the DC-link voltage is designed significantly. In this paper, the design method for the DC-link voltage considered the fault voltage level and the loss is explained, and the validity of the proposed design method is verified through the HVRT function simulation based on the PSCAD model of the 2MVA Type 4 wind turbine.

Advanced Small-Signal Model of Multi-Terminal Modular Multilevel Converters for Power Systems Based on Dynamic Phasors

  • Hu, Pan;Chen, Hongkun;Chen, Lei;Zhu, Xiaohang;Wang, Xuechun
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.467-481
    • /
    • 2018
  • Modular multilevel converter (MMC)-based high-voltage direct current (HVDC) presents attractive technical advantages and contributes to enhanced system operation and reduced oscillation damping in dynamic MMC-HVDC systems. We propose an advanced small-signal multi-terminal MMC-HVDC based on dynamic phasors and state space for power system stability analysis to enhance computational accuracy and reduce simulation time. In accordance with active and passive network control strategies for multi-terminal MMC-HVDC, the matchable small-signal stability models containing high harmonics and dynamics of internal variables are conducted, and a related theoretical derivation is carried out. The proposed advanced small-signal model is then compared with electromagnetic-transient and traditional small-signal state-space models by adopting a typical multi-terminal MMC-HVDC network with offshore wind generation. Simulation indicates that the advanced small-signal model can successfully follow the electromechanical transient response with small errors and can predict the damped oscillations. The validity and applicability of the proposed model are effectively confirmed.

Analytical Approach of Sliding Installation Method with Spar Structure

  • Lee, Jong-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.35 no.7
    • /
    • pp.575-580
    • /
    • 2011
  • It is important to understand the trajectory of structure in launching process because of the short time of launching process may result in unexpected accidents or damage to structures. The high risk of structural failure is not avoidable without the fully comprehension of changing forces in launching procedure. The commercial software can evaluate the motion of launching event in calm water condition but there is the limitation of research application because of the programmed commercial software. The launching process of the spar hull is suggested with stage concept that is divided into 10 stages in time domain. A force equilibrium diagram is derived for each stage where the changes of force vector and motion characteristics take place. In particular, the effects of changes in buoyancy and drag force due to the progressive submergence of the spar hull are taken into account by means of a touch length concept. The results contained in this paper provide the valuable information of the trajectory motion evaluation with suggested methods in spar launching process with sliding barge. Furthermore, the presented stage concept and touch length concept will provide basic knowledge for understanding launching process and help to develop further research area for launching analysis.

Fault Classification of a Blade Pitch System in a Floating Wind Turbine Based on a Recurrent Neural Network

  • Cho, Seongpil;Park, Jongseo;Choi, Minjoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.287-295
    • /
    • 2021
  • This paper describes a recurrent neural network (RNN) for the fault classification of a blade pitch system of a spar-type floating wind turbine. An artificial neural network (ANN) can effectively recognize multiple faults of a system and build a training model with training data for decision-making. The ANN comprises an encoder and a decoder. The encoder uses a gated recurrent unit, which is a recurrent neural network, for dimensionality reduction of the input data. The decoder uses a multilayer perceptron (MLP) for diagnosis decision-making. To create data, we use a wind turbine simulator that enables fully coupled nonlinear time-domain numerical simulations of offshore wind turbines considering six fault types including biases and fixed outputs in pitch sensors and excessive friction, slit lock, incorrect voltage, and short circuits in actuators. The input data are time-series data collected by two sensors and two control inputs under the condition that of one fault of the six types occurs. A gated recurrent unit (GRU) that is one of the RNNs classifies the suggested faults of the blade pitch system. The performance of fault classification based on the gate recurrent unit is evaluated by a test procedure, and the results indicate that the proposed scheme works effectively. The proposed ANN shows a 1.4% improvement in its performance compared to an MLP-based approach.