• Title/Summary/Keyword: Offshore Oil & Development

Search Result 74, Processing Time 0.024 seconds

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF

Analysis of dynamics characteristics of water injection pump through the 2D finite element (2D 유한요소 해석을 통한 Water injection pump의 동특성 분석)

  • LEE, JONG-MYEONG;KIM, YONG-HWI;KIM, JUN-HO;CHOI, HYEON-CHEOL;CHOI, BYEONG KEUN
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.408-414
    • /
    • 2014
  • After drilling operations at the offshore plant to production to crude oil to high pressure. After that time the low pressured of pipe inside when the secondary produce so oil recovery is reduced. At that time injection sea water at the pipe inside through water injection pump that the device Increase recovery so to be research and development at many industry. So developing 3-stage water injection pump at the domestic company. A variety of mathematical analysis during the detailed design analysis was not made through the dynamics characteristic. In this paper, a 2D finite element analysis is performed through the dynamics of the present study was the validation of the model.

  • PDF

A Study on Subsidence of Offshore Wind Power System Foundation (해상풍력시스템의 기초침하에 관한 연구)

  • Seo, Dong-Il;Shin, Sung-Ryul;Lim, Jong-Se;Yoon, Ji-Ho;Jang, Won-Yil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.1020-1027
    • /
    • 2007
  • As a national enterprise has been expanded over and over, the worldwide energy consumption has been growing necessarily. Moreover, as recently energy spendings are on the increase in countries such as BRICs, it has resulted that a rise in the price of both oil and mineral resources and instability between supply and demand become serious issue in the world resources market. The recent high price of oil and mineral resources have a deep influence on economy and threaten energy security and even national prosperity of Korea. In addition to these, exhaustion of fossil fuels and the enhanced greenhouse effect which results from gases emitted as a result of fossil fuels has been in serious questions which occur a great deal of effort to secure clean energy resources all around the world. As it is considerably possible for Korea that the Kyoto protocol may come into effect on and after 2013, it is essential to require the technological development to promote energy efficiency as well as to develope safe and renewable energy resources. The wind energy technology which converts kinetic energy into electrical energy has been in the focus of the world's attention. In this study, two-dimensional numerical analyses were conducted to observe subsidence aspects of the sea bottom on differently applied loads and various ground conditions.

A Study on the Separation Efficiency of In-line Type Subsea Oil-water Separator (In-line형 심해 유수분리기의 분리 효율에 관한 연구)

  • Kim, Hyun-Ji;Kim, Gwi-Nam;Kim, Young-Ju;Woo, Nam-Sub;Huh, Sun-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.253-260
    • /
    • 2021
  • The implementation of subsea separation and liquid boosting is becoming a common development scheme for the exploration of deep water fields. Subsea separation is an attractive and economic solution to develop deep offshore fields producing fluid without hydrate or wax. A subsea separator can avoid or simplifying costly surface platforms of floating vessels, as well as being an efficient tool to enhance hydrocarbon production. Subsea separation system should be reliable to ensure successful operation in a wide range of 3-phase flow regime. In this study, multiphase flow characteristics inside in-line type subsea separation system are investigated for the design of subsea separation system.

A study on heave motion of Spar Platform with the Helical fin (Helical fin을 가진 Spar Platform의 상하동요에 관한 연구)

  • Park, Ro-Sik;Jung, Chang-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.245-248
    • /
    • 2006
  • The development of offshore structures have been increased spectacularly, especially in oil rig structures. This study concerns with the effects of heave motion of spar platform that attached the helical fin. There are three models, namely, cylinder, cylinder-truss and cylinder-cell with different geometrical dimensions are examined. Finally, the interaction between structure and fluid is closely considered. As the results, it can be seen that the existence of helical fin does not influence on surging but it affects a little on heaving of spar platform.

  • PDF

An Investigation of Human Error Analysis Techniques in Various Industries with Implications for the Korean Railway Industry (인적오류 분석기법의 국내외 활용 현황 및 국내 철도 산업에의 적용 방안)

  • Baek, Dong-Hyun;Yoon, Wan-Chul;Kim, Dong-San
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.7-15
    • /
    • 2007
  • Since human errors are being recognized as one of the primary issues in railway safety, there is a definite need for human error analysis techniques that can identify the types of errors and their causes and derive effective countermeasures to help reduce their future probability. But, for some reasons, there are not yet systematic procedures or techniques for analyzing human errors in the Korean railway industry. This paper introduces several techniques that have been developed and utilized for analyzing human errors in Korean and overseas nuclear power aviation railway, offshore oil industry, etc., and summarizes the strengths and weaknesses of each technique. Based on the Investigation of the techniques, the paper also discusses the implications for the development of a human error analysis system for the Korean railway industry.

Power Density Characteristics Analysis and Design of Magnetic Gear according to Speed for Drive Train of 10MW Offshore Wind Turbine (10MW급 해상풍력발전기 드라이브 트레인을 위한 마그네틱 기어의 속도별 설계 및 출력밀도 특성분석)

  • Kim, Chan-Ho;Kim, Yong-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1718-1723
    • /
    • 2015
  • The diameter of the rotor of 2MW wind turbine is being developed by a number of companies with more than 80m, reliability and economic efficiency of the wind power generator has been improved. The need for large-scale wind turbine with excellent economy has been attracting attention because the new orders and the location of the wind turbine market has reached a limit. Technology development for enlargement of wind turbine is possible not only the improvement of energy efficiency but also reduce the construction costs per unit capacity. However, mechanical gearboxes used in wind generators have problems of wear, damage, need for lubrication oil and maintenance. Therefore, we want to configure the gearbox of a large-scale wind turbine using a magnetic gear in order to solve these problems of mechanical gearbox.

3-D petroleum system modeling of the Jeju Basin, offshore southern Korea (남해 대륙붕 제주분지의 3-D 석유시스템 모델링)

  • Son, Byeong-Kook;Lee, Ho-Young
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.587-603
    • /
    • 2018
  • 3-D petroleum system modeling was performed on the Jeju Basin, offshore southern Korea to analyze the hydrocarbon migration and accumulation as well as the generation and expulsion of the hydrocarbon, based on subsurface structure maps of respective sedimentary formations. The lowermost formation deposited in Eocene time was assigned as a source rock, for which a mixed kerogen of type II and III was input in the modeling of oil and gas generation in consideration of the sedimentary environment of fluvio-lacustrine condition. Initial TOC was 4% as an input, based on the analysis of the well data and sedimentary environment. The modeling results show that a considerable amount of hydrocarbons was generated and expelled from the source rocks at the western Joint Development Zone (JDZ) sub-block 4, where the hydrocarbons was migrated to the above reservoir rocks at 20 Ma. The oil and gas in the reservoir rocks of the JDZ sub-block 4 are accumulated into the prospects with closure structures that has already been formed at the nearby areas. Another generation of hydrocarbon occurs from the source rock at the eastern border area of JDZ sub-block 1 and 2, where the expulsion of the hydrocarbons occurs at 10 Ma from the source rock into the above reservoir rocks, in which the accumulation also is expected. The generation, migration and accumulation were retarded at the eastern area of the JDZ sub-block 1 and 2, compared with the area of the western JDZ sub-block 4. Based on the modeling results, it is estimated that gases migrated laterally and vertically in long distance whereas oil migrated laterally in shorter distance than gases. A substantial amount of hydrocarbon could have seeped out of the reservoir formations to the surface since the migration of oil and gas actively occurred in Miocene time before the formation of seals. However, the modeling shows that the hydrocarbon could be accumulated smoothly into the closed structures that can be formed locally by alternation of sand and shale beds.

Analysis of Dynamics Characteristics of Water Injection Pump through the 2D Finite Element (2D 유한요소 해석을 통한 물 분사 펌프의 동특성 분석)

  • Lee, Jong-Myeong;Kim, Yong-Hwi;Kim, Jun-Ho;Choi, Hyeon-Cheol;Choi, Byeong Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.6
    • /
    • pp.462-469
    • /
    • 2014
  • After drilling operations at the offshore plant, crude oil is producted under high pressure. After that time, oil recovery is reduced, because the pressure of the pipe inside is low during the secondary produce. At that time injection sea water at the pipe inside through water injection pump that the device increase to recovery. A variety of mathematical analysis during the detailed design analysis was not made through the dynamics characteristic at the domestic company. 2D model has reliability of analysis results for the uncomplicated model. Also element and the node the number of significantly less than in the 3D model. So, the temporal part is very effective. In addition, depending on the quality of mesh 3D is a real model and FEM model occurs error. So, user needs a lot of skill. In this paper, a 2D finite element analysis was performed through the dynamics analysis and the study model was validated.

Study on Moonpool Resonance Effect on Motion of Modern Compact Drillship

  • Yang, Seung Ho;Yang, Young Jun;Lee, Sang Beom;Do, Jitae;Kwon, Sun Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.53-60
    • /
    • 2013
  • A drillship is a representative floating offshore installation. The boom in oil and gas field development has dramatically increased the demands for drillships. Drillships have a moonpool in the center area of the ship for the purpose of drilling. This moonpool has an effect on the seakeeping performance of a drillship in the vicinity of the resonance frequency. Because of the moonpool, drillships act in different resonance modes, called the sloshing mode and piston mode. The objective of this study was to find the moonpool effect on the motion of a drillship through the motion analysis of a currently operating modern compact drillship. The predicted resonance frequencies based on Molin's theoretical formula, Fukuda's empirical formula, and BEM-based numerical analysis are compared. The accuracy of the predictions using the theoretical and empirical formulas is compared with the numerical analysis and evaluated. In the case of the piston mode, the difference between the resonance frequency from theoretical formula and the resonance frequency from the numerical analysis is analyzed. The resonance frequency formula for more a complex moonpool geometry such as a moonpool with a cofferdam is necessarily emphasized.