DOI QR코드

DOI QR Code

3-D petroleum system modeling of the Jeju Basin, offshore southern Korea

남해 대륙붕 제주분지의 3-D 석유시스템 모델링

  • Son, Byeong-Kook (Petroleum and Marine Division, Korea Institute of Geoscience and Mineral Resource) ;
  • Lee, Ho-Young (Petroleum and Marine Division, Korea Institute of Geoscience and Mineral Resource)
  • 손병국 (한국지질자원연구원 석유해저연구본부) ;
  • 이호영 (한국지질자원연구원 석유해저연구본부)
  • Received : 2018.10.22
  • Accepted : 2018.11.23
  • Published : 2018.12.31

Abstract

3-D petroleum system modeling was performed on the Jeju Basin, offshore southern Korea to analyze the hydrocarbon migration and accumulation as well as the generation and expulsion of the hydrocarbon, based on subsurface structure maps of respective sedimentary formations. The lowermost formation deposited in Eocene time was assigned as a source rock, for which a mixed kerogen of type II and III was input in the modeling of oil and gas generation in consideration of the sedimentary environment of fluvio-lacustrine condition. Initial TOC was 4% as an input, based on the analysis of the well data and sedimentary environment. The modeling results show that a considerable amount of hydrocarbons was generated and expelled from the source rocks at the western Joint Development Zone (JDZ) sub-block 4, where the hydrocarbons was migrated to the above reservoir rocks at 20 Ma. The oil and gas in the reservoir rocks of the JDZ sub-block 4 are accumulated into the prospects with closure structures that has already been formed at the nearby areas. Another generation of hydrocarbon occurs from the source rock at the eastern border area of JDZ sub-block 1 and 2, where the expulsion of the hydrocarbons occurs at 10 Ma from the source rock into the above reservoir rocks, in which the accumulation also is expected. The generation, migration and accumulation were retarded at the eastern area of the JDZ sub-block 1 and 2, compared with the area of the western JDZ sub-block 4. Based on the modeling results, it is estimated that gases migrated laterally and vertically in long distance whereas oil migrated laterally in shorter distance than gases. A substantial amount of hydrocarbon could have seeped out of the reservoir formations to the surface since the migration of oil and gas actively occurred in Miocene time before the formation of seals. However, the modeling shows that the hydrocarbon could be accumulated smoothly into the closed structures that can be formed locally by alternation of sand and shale beds.

남해 대륙붕 제주분지의 각 퇴적층에 대한 심층 구조도를 작성하고 이를 기반으로 3-D 석유시스템 모델링을 수행하여, 이 지역의 석유와 가스의 생성과 배출, 그리고 이동과 집적에 대하여 분석하였다. 최하부 퇴적층인 에오세층을 근원암으로 설정하였으며, 하천-호수의 퇴적환경을 고려하여 타입 II와 III가 혼합된 케로젠으로부터 석유와 가스가 생성되는 것으로 입력하여 모델링을 실시하였다. 초기 유기탄소 함량은 기존의 시추공 자료들과 퇴적환경을 고려하여 4%로 입력하였다. 모델링 결과 많은 양의 석유와 가스가 생성되는 지역은 제주분지 내 한일공동개발광구(Joint Development Zone; 이하 JDZ) 4소구 서쪽지역으로, 20 Ma에 많은 양의 석유와 가스가 이곳의 근원암으로부터 배출되어 상위의 저류층으로 이동하였다. JDZ 4소구 지역의 근원암에서 배출되어 나온 석유와 가스는 주변에 이미 형성되어 있는 크고 작은 폐쇄형 유망구조(closure)로 이동하여 집적되었다. JDZ 1소구와 2소구가 접한 지역의 동쪽부분도 석유와 가스가 많이 생성되는 지역이다. 이곳에서 생성된 석유와 가스는 10 Ma에 주로 배출되었으며 근원암에서 배출된 석유와 가스는 상위의 퇴적층으로 이동하여 집적되었다. JDZ 1소구와 2소구가 접한 지역은 JDZ 4소구 지역보다 석유와 가스의 배출이 상대적으로 늦게 이루어지고 저류암으로의 이동도 상대적으로 늦게 나타나는 것으로 모델링되었다. 석유의 경우는 비교적 짧은 수평거리를 이동하는 것에 비하여 가스의 경우는 상대적으로 먼 수평거리를 이동하였으며 수직이동도 활발하였을 것으로 추정된다. 석유와 가스의 이동이 활발했던 시기는 마이오세 시기이며 이때는 광역적인 덮개암이 형성되기 이전이므로 많은 양의 석유와 가스가 지표로 유출되었을 가능성이 있다. 그러나 올리고세층과 마이오세층은 사질암과 이질암이 교호되는 지층으로, 폐쇄형 유망구조가 잘 형성된 곳에서는 석유와 가스가 집적된 것으로 모델링 되었다.

Keywords

Acknowledgement

Grant : 석유시스템-정적-동적자료 융합을 통한 유가스전 지능형 평가 기술개발

Supported by : 한국지질자원연구원

References

  1. Ahlbrandt, T.S., Charpentier, R.R., Klett, T.R., Schmoker, J.W., Schenk, C.J. and Ulmishek, G.F., 2005, Global Resource Estimates from Total Petroleum Systems. American Association of Petroleum Geologists, Memoir 86, 324 p.
  2. Al-Hajeri, M.M., Saeed, M.A., Derks, J., Fuchs, T., Hantschel, T., Kauerauf, A., Neumaier, M., Schenk, O., Swientek, O., Tessen, N., Welte, D., Wygrala, B., Kornpihl, D. and Peters, K., 2009, Basin and petroleum system modeling. Oilfield Review, 21, 14-29.
  3. Bordenave, M.L., 1993, Applied Petroleum Geochemistry, Editions Technip, Paris, 524 p.
  4. Doust, H. and Sumner, H.S., 2007, Petroleum systems in rift basins - a collective approach in Southeast Asian basins. Petroleum Geoscience, 13, 127-144. https://doi.org/10.1144/1354-079307-746
  5. Gautier, D.L., Bird, K.J., Charpentier, R.R., Grantz, A., Houseknecht, D.W., Klett, T.R., Moore, T.E., Pitman, J.K., Schenk, C.J., Schuenemeyer, J.H., Sorensen, K., Tennyson, M.E., Valin, Z.C. and Wandrey, C.J., 2009, Assessment of Undiscovered Oil and Gas in the Arctic. Science, 324, 1175-1179. https://doi.org/10.1126/science.1169467
  6. Hall, R., 2009, Hydrocarbon basins in SE Asia: Understanding why they are there. Petroleum Geoscience, 15, 131-146. https://doi.org/10.1144/1354-079309-830
  7. Han, J.H., Son, B.K., Hwang, I.G., Ryu, I.C., Lee, G.H., Shin, K.S., Park, H., Kim, H.T. and Shin, S.H., 2013, Intergrated Petroleum Geology, Goomibook, Seoul, 394 p (in Korean).
  8. Hantschel, T. and Kauerauf, A., 2009, Fundamentals of basin and petroleum systems modeling. Spriner-Verlag, Berlin Heidelberg, 476 p.
  9. Hao, F., Zhou, X., Zhu, Y., Bao, X. and Yang, Y., 2009, Charging of the neogene Penglai 19-3 field, Bohai Bay Basin, China: Oil accumulation in a young trap in an active fault zone. American Association of Petroleum Geologists, 93, 155-179. https://doi.org/10.1306/09080808092
  10. Huvaz, O., Sarikaya, H. and Isik, T., 2007, Petroleum systems and hydrocarbon potential analysis of the northwestern Uralsk basin, NW Kazakhstan, by utilizing 3D basin modeling methods. Marine and Petroleum Geology, 24, 247-275. https://doi.org/10.1016/j.marpetgeo.2006.11.002
  11. Jarvie, D.M., Hill, R.J., Ruble, T.E. and Pollastro, R.M., 2007, Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. American Association of Petroleum Geologists Bulletin, 91, 475-499. https://doi.org/10.1306/12190606068
  12. Johannesen, J., Hay, S.J., Milne, J.K., Jebsen, C., Gunnesdal, S.C. and Vayssaire, A., 2002, 3D oil migration modelling of the Jurassic petroleum system of the Statfjord area, Norwegian North Sea. Petroleum Geoscience, 8, 37-50. https://doi.org/10.1144/petgeo.8.1.37
  13. Jolivet, L., Huchon, P. and Claude, R., 1989, Tectonic setting of Western Pacific Marginal Basins. Tectonophysics, 160, 23-47. https://doi.org/10.1016/0040-1951(89)90382-X
  14. Kim, S.-H. and Son, B.-K., 2013, Petroleum system modeling of the Jeju Basin, offshore southern Korea. Journal of the Geological Society of Korea, 49, 473-491 (in Korean with English abstract).
  15. KNOC, 2018, http://www.knoc.co.kr/sub03/sub03_1_2.jsp (October 14, 2018).
  16. Koh, C.-S., Yoon, S.-H., Lee, D.-K. and Yoo, H.-S., 2016, Tectonic evolution and depositional environments of Jeju and Socotra basins in the southernmost continental shelf of the South Sea, Korea. Journal of the Geological Society of Korea, 52, 355-371 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2016.52.3.355
  17. Kuhlmann, G., Adams, S., Anka, Z., Campher, C., Di Primio, R. and Horsfield, B., 2011, 3D petroleum systems modelling within a passive margin setting, orange basin, block 3/4, offshore south africa - implications for gas generation, migration and leakage, South African Journal of Geology, 114, 387-414. https://doi.org/10.2113/gssajg.114.3-4.387
  18. Kuhn, P.P., di Primio, R., Hill, R., Lawrence, J.R. and Horsfield, B., 2012, Three-dimensional modeling study of the low-permeability petroleum system of the Bakken Formation. American Association of Petroleum Geologists Bulletin, 96, 1867-1897. https://doi.org/10.1306/03261211063
  19. Kwon, Y.I., Park, K.S., Yu, K.M. and Son, J.D., 1995, Stratigraphy and provenance of Non-marine sediments in the Tertiary Cheju Basin. Korean Journal of Petroleum Geology, 3, 1-15 (in Korean with English abstract).
  20. Lee, B.-R. and Son, B.-K., 2007, Petroleum system modeling of continental shelf area, Southwestern margin of the Ulleung Basin. Journal of the Geological Society of Korea, 43, 477-499 (in Korean with English abstract).
  21. Lee, G.H., Kim, B., Shin, K.S. and Sunwoo, D., 2006, Geological evolution and aspects of the petroleum geology of the northern East China Sea self basin. American Association of Petroleum Geologists Bulletin, 90, 237-260. https://doi.org/10.1306/08010505020
  22. Lee, H.-Y., Shin, W.-C., Koo, N.-H., Kang, D.-H., Kim, W., Kim, B.Y., Cheong, S., Kim, Y.-G., Hwang, K.-D., Seo, G.-S. and Cho, D., 2012, Atlas of petroleum resources exploration on the Korean continental shelf (Jeju Basin). Korea Institute of Geoscience and Mineral Resources, 40 p (in Korean).
  23. Lee, S.A. and Son, B.-K., 2016, Petroleum system modeling of the Sora basin, offshore southern Korea. Journal of the Geological Society of Korea, 52, 333-353 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2016.52.3.333
  24. Lee, Y.J., 1997, Petroleum Geochemistry of Organic Matter from the Cheju Basin, northeastern part of the East China Sea. Ph.D. thesis, Chungnam National University, Daejeon, Korea, 328 p.
  25. Li, D., 1984, Geologic evolution of petroliferous basins on continental shelf of China. American Association of Petroleum Geologists Bulletin, 68, 993-1003.
  26. Magoon, L.B. and Dow, W.G., 1994, The petroleum system - from source to trap. American Association of Petroleum Geologists Memoir, 60, 3-24.
  27. Meng, W.J. and Chou, J.T., 1976, Petroliferous Taiwan basins in framework of Western Pacific Ocean. American Association of Petroleum Geologists Memoir, 25, 256-260.
  28. Oh, J., Park, K.-S. and Park, K.-P., 1997, The name of the sedimentary basins in the continental margin of Korea. Journal of the Geological Society of Korea, 33, 148-159 (in Korean with English abstract).
  29. Oh, J.-H., Kwak, Y.-H., Son, J.-D., Cheong, T.-J., Huh, D.-K., Ryu, B.-J., Son, B.-K., Kwon, S.-K., Lee, Y.-J. and Kim, H.-J., 1992, Study on the petroleum geology and geochemistry in Korean Offshore. Korea Institute of Geoscience and Mineral Resources, KR-91-5B-2, 141 p.
  30. Okui, A., Siebert, R.M. and Matsubayashi, H., 1998, Simulation of oil expulsion by 1-D and 2-D basin modelling - saturation threshold and relative permeabilities of source rocks. In:Duppenbecker, S.J. and Iliffe, J.E. (eds.) Basin Modelling: Practice and Progress. Geological Society, London, Special Publications, 141, 45-72.
  31. Peters, K.E., Burnham, A.K., Walters, C.C. and Schenk, O., 2018, Guidelines for kinetic input to petroleum system models from open-system pyrolysis. Marine and Petroleum Geology, 92, 979-986. https://doi.org/10.1016/j.marpetgeo.2017.11.024
  32. Peters, K.E., Walters, C.C. and Moldowan, J.M., 2005, The Biomarker guide. I. Biomarkers and isotopes in the environment and human history. Cambridge University Press, Cambridge, 471 p.
  33. Poelchau, H.S., Baker, D.R., Hantschel, T., Horsfield, B. and Wygrala, B., 1997, Basin simulation and the design of the conceptual basin model, In:Welte, D.H., Horsfield, B. and Baker, D.R. (eds.), Petroleum and basin evolution. Springer-Verlag, Berlin, 5-70.
  34. Son, B.-K. and Park, M., 2013, Hydrocarbon generation and migration modeling in southwestern margin of the Ulleung Basin, East Sea. Journal of the Geological Society of Korea, 49, 453-471 (in Korean with English abstract).
  35. Sweeney, J.J. and Burnham, A.K., 1990, Evolution of a simple model of vitrinite reflectance based on chemical kinetics. American Association of Petroleum Geologists Bulletin, 74, 1559-1570.
  36. Underdown, R. and Redfern, J., 2008, Petroleum generation and migration in the Ghadames Basin, north Africa: A two-dimensional basin-modeling study. American Association of Petroleum Geologists, 92, 53-76. https://doi.org/10.1306/08130706032
  37. Ungerer, P., 1990, State of the art of research in kinetic modelling of oil formation and expulsion. Organic Geochemistry, 16, 1-25. https://doi.org/10.1016/0146-6380(90)90022-R
  38. Ungerer, P., Burrus, J., Doligez, B., Chenet, P.Y. and Bessis, F., 1990, Basin evaluation by integrated two-dimensional modeling of heat transfer, fluid flow, hydrocarbon generation, and migration. American Association of Petroleum Geologists Bulletin, 74, 309-335.
  39. Welte, D.H., Horsfield, B. and Baker, D.R., 1996, Petroleum and basin evolution. Springer-Verlag, Berlin, 535 p.
  40. Welte, D.H., Horsfield, B. and Baker, D.R., 2012, Petroleum and basin evolution: insights from petroleum geochemistry, geology and basin modeling, Springer Science and Business Media. NewYork, 535 p.
  41. Welte, D.H. and Yalçin, M.N., 1987, Basin modelling - A new comprehensive method in petroleum geology. Advances in Organic Geochemistry, 13, 141-151.
  42. Wygrala, B.P., 1988, Integrated computer-aided basin modeling applied to analysis of hydrocarbon generation history in a Northern Italian oil field. Organic Geochemistry, 13, 187-197. https://doi.org/10.1016/0146-6380(88)90039-3
  43. Yang, F.-L., Xu, X., Zhao, W.-F. and Zun, Z., 2011, Petroleum accumulations and inversion structures in the Xihu depression. Journal of Petroleum Geology, 34, 429-440. https://doi.org/10.1111/j.1747-5457.2011.00513.x
  44. Yoon, S.H., Son, B.K. and Shinn, Y.J., 2009, Review on geology and potential petroleum systems of sedimentary basins in the South Sea of Korea. KIGAM Bulletin, 13, 54-69 (in Korean with English abstract).
  45. Yun, H., Yi, S., Kim, J.H., Byun, H.S., Kim, G.H. and Park, D.B., 1999, Biostratigraphy and paleoenvironment of the Cheju sedimentary basin-based on materials from explorations, Geobuk-1 and Okdom-1. Journal of Paleontological Society of Korea, 15, 43-94 (in Korean with English abstract).
  46. Zhang, C., Li, S., Yang, J., Yang, S. and Wang, J., 2004, Petroleum migration and mixing in the Pearl River Mouth Basin, South China Sea. Marine and Petroleum Geology, 21, 215-224. https://doi.org/10.1016/j.marpetgeo.2003.11.010
  47. Zhou, Z., Zao, J. and Yin, P., 1989, Characteristics and tectonic evolution of the east China Sea. In:Zhu, X. (ed.), Chinese sedimentary basins, Elsevier, 165-179.

Cited by

  1. Numerical or analog modeling study vol.54, pp.6, 2018, https://doi.org/10.14770/jgsk.2018.54.6.585