• Title/Summary/Keyword: Off-gas

Search Result 894, Processing Time 0.025 seconds

Rediscovery of the Arctic: A New Arena of Competition for Natural Resources in the 21st Century? (북극의 재발견: 국제 자원경쟁의 새로운 각축장?)

  • Lee, Seo-Hang
    • Strategy21
    • /
    • s.30
    • /
    • pp.200-235
    • /
    • 2012
  • Over the past few years, due to the climate change of the earth, the Arctic's sea ice cover is undergoing a historic transformation - thinning, extent reduction in all seasons, and mitigation in the area of multi-year ice in the central Arctic Ocean. These changes allow for increases in maritime access throughout the Arctic Ocean and for potential longer seasons of navigation and possibly transarctic voyage in the summer. These changes also allow more exploration for oil, gas, and other minerals. The Arctic is now an archetype of the complex, multi-dimensional global problems of the twenty-first century. Military security, environmental security, and economic security interact. The potentially enormous economic stakes, sufficient to change the strategic balance among the states of the region, set off competitive pressures for national advantage. Korea, which is heavily dependent upon the sea lane in terms of transportation of its exports and imports, is very much interested in the Arctic sea routes. Korea believes that the Artic sea route, particularly the Northern Sea Route (NSR), could serve as a new useful sea lane, which will enable shorter times between East Asia and Europe, thus resulting in substantial cost saving for ship operators. In addition to shipping, Korea is interested in other Arctic-related maritime industries. Korea, as a leading shipbuilder in the global market, is interested in building ice breakers, drill ships, and other vessels which can contribute to safe operation in Arctic resource development and exploration. Korea, as one of the future stakeholders in Arctic maritime activities, should be ready to foster international cooperation in the region.

  • PDF

Aerodynamic design and optimization of a multi-stage axial flow turbine using a one-dimensional method

  • Xinyang Yin;Hanqiong Wang;Jinguang Yang;Yan Liu;Yang Zhao;Jinhu Yang
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.245-256
    • /
    • 2023
  • In order to improve aerodynamic performance of multi-stage axial flow turbines used in aircraft engines, a one-dimensional aerodynamic design and optimization framework is constructed. In the method, flow path is generated by solving mass continuation and energy conservation with loss computed by the Craig & Cox model; Also real gas properties has been taken into consideration. To obtain an optimal result, a multi-objective genetic algorithm is used to optimize the efficiencies and determine values of various design variables; Final design can be selected from obtained Pareto optimal solution sets. A three-stage axial turbine is used to verify the effectiveness of the developed optimization framework, and designs are checked by three-dimensional CFD simulation. Results show that the aerodynamic performance of the optimized turbine has been significantly improved at design point, with the total-to-total efficiency increased by 1.17% and the total-to-static efficiency increased by 1.48%. As for the off-design performance, the optimized one is improved at all working points except those at small mass flow.

MODEL-BASED LIFE CYCLE COST AND ASSESSMENT TOOL FOR SUSTAINABLE BUILDING DESIGN DECISION

  • Iris X. Han;W. Zhou;Llewellyn C.M. Tang
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.311-317
    • /
    • 2011
  • There is a growing concern in reducing greenhouse gas emissions all over the world. The U.K. has set 34% target reduction of emission before 2020 and 80% before 2050 compared to 1990 recently in Post Copenhagen Report on Climate Change. In practise, Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) tools have been introduced to construction industry in order to achieve this such as. However, there is clear a disconnection between costs and environmental impacts over the life cycle of a built asset when using these two tools. Besides, the changes in Information and Communication Technologies (ICTs) lead to a change in the way information is represented, in particular, information is being fed more easily and distributed more quickly to different stakeholders by the use of tool such as the Building Information Modelling (BIM), with little consideration on incorporating LCC and LCA and their maximised usage within the BIM environment. The aim of this paper is to propose the development of a model-based LCC and LCA tool in order to provide sustainable building design decisions for clients, architects and quantity surveyors, by then an optimal investment decision can be made by studying the trade-off between costs and environmental impacts. An application framework is also proposed finally as the future work that shows how the proposed model can be incorporated into the BIM environment in practise.

  • PDF

Challenges in nuclear energy adoption: Why nuclear energy newcomer countries put nuclear power programs on hold?

  • Philseo Kim;Hanna Yasmine;Man-Sung Yim;Sunil S. Chirayath
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1234-1243
    • /
    • 2024
  • The pressing need to mitigate greenhouse gas emissions has stimulated a renewed interest in nuclear energy worldwide. However, while numerous countries have shown interest in nuclear power over the course of history, many of them have not continued their pursuit and chosen to defer or abandon their peaceful nuclear power projects. Scrapping a national nuclear power program after making initial efforts implies significant challenges in such a course or a waste of national resources. Therefore, this study aims to identify the crucial factors that influence a country's decision to terminate or hold off its peaceful nuclear power programs. Our empirical analyses demonstrate that major nuclear accidents and leadership changes are significant factors that lead countries to terminate or defer their nuclear power programs. Additionally, we highlight that domestic politics (democracy), lack of military alliance with major nuclear suppliers, low electricity demand, and national energy security environments (energy import, crude oil price) can hamper a country's possibility of regaining interest in a nuclear power program after it has been scrapped, suspended, or deferred. The findings of this study have significant implications for policymakers and stakeholders in the energy sector as they strive to balance the competing demands of energy security, and environmental sustainability.

Greenhouse Gas Reduction by Air Quality Management Policy in Gyeonggi-do and Its Co-benefit Analysis (경기도 대기질 개선 정책의 온실가스 동시 저감 및 그에 따른 공편익 효과 분석)

  • Kim, Dong Young;Choi, Min-Ae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.6
    • /
    • pp.570-582
    • /
    • 2017
  • In recent years, national and local government's air quality management and climate change adaptation policy has been significantly strengthened. The measures in the two policies may be in a relationship of trade-off or synergy to each other. Greenhouse gases and air pollutants are mostly emitted from the same sources of using considerable amounts of fossil fuels. Co-benefits, in which either measure has a positive effect on the other, may be maximized by reducing the social costs and by consolidating the objectives of the various policies. In this study, the co-benefits were examined by empirically analyzing the effects of air pollutants and greenhouse gas emission reduction, social cost, and cost effectiveness between the two policies. Of the total 80 projects, the next 12 projects generated co-benefits. They are 1) extend restriction area of solid fuel use, 2) expand subsidy of low-$NO_x$ burner, 3) supply hybrid-vehicles, 4) supply electric-vehicles, 5) supply hydrogen fuel cell vehicles, 6) engine retrofit, 7) scrappage of old car, 8) low emission zone, 9) transportation demand management, 10) supply land-based electric of ship, 11) switching anthracite to clean fuel in private sector, 12) expand regional combined-energy supply. The benefits of air pollutants and greenhouse gas-related measures were an annual average of KRW 2,705.4 billion. The social benefits of the transportation demand management were the highest at an annual average of KRW 890.7 billion, and followed by scrappage of old cars and expand regional combined-energy supply. When the social benefits and the annual investment budgets are compared, the cost effectiveness ratio is estimated to be about 3.8. Overall, the reduction of air pollutants caused by the air quality management policy of Gyeonggi-do resulted in an annual average of KRW 4,790.2 billion. In the point sources management sector, the added value of $CO_2$ reduction increased by 4.8% to KRW 1,062.8 billion, while the mobile sources management sector increased by 3.6% to KRW 3,414.1 billion. If social benefits from $CO_2$ reduction are added, the annual average will increase by 7.2% to KRW 5,135.4 billion. The urban and energy management sectors have shown that social benefits increase more than twice as much as the benefits of $CO_2$ reduction. This result implies that more intensive promotion of these measures are needed. This study has significance in that it presents the results of the empirical analysis of the co-benefits generated between the similar policies in the air quality management and the climate change policy which are currently being promoted in Gyeonggi-do. This study suggested that the method of analyzing the policy effect among the main policies in the climate atmospheric policy is established and the effectiveness and priority of the major policies can be evaluated through the policy correlation analysis based on the co-benefits. It is expected that it could be a basis for evaluation the efficiency of the climate change adaptation and air quality management policies implemented by the national and local governments in the future.

A Case Study on the Limitations of the Choice of Law caused by Internationally Mandatory Rules in Entering into the Turn-Key Contracts (턴키계약체결시 국제적 강행규정에 의한 준거법 제한에 관한 사례연구 - Clough Engineering Ltd v Oil & Natural Gas Corp Ltd 사건을 중심으로 -)

  • Oh, Won-Suk;Kim, Yong-Il
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.54
    • /
    • pp.145-166
    • /
    • 2012
  • This article examines the limitations of the choice of law caused by Internationally Mandatory Rules in Entering into the Turn-Key Contracts. In June 2007, Clough Engineering, a corporation based in Western Australia, approached the Federal Court of Australia seeking injunctive relief and leave to commence proceedings against an entity located outside Australia, the Oil & Natural Gas Corp of India (ONGC). Clough had contracted with ONGC to provide a range of services in relation to the construction of gas and oil wells off the coast of India. The contract was governed by Indian law, and included a clause by which the parties agreed to submit their disputes to arbitration. Yet the Federal Court assumed jurisdiction over the dispute, principally because Clough had framed its claim as a plea for relief for contraventions of Australia's Trade Practices Act 1974. The result of this cases that it is possible for an arbitral tribunal to hear a claim made under the Trade Practices Act even if that claim arises "in connection with"a contract the proper law of which is not the law of Australia. However, in Transfield Philippines Inc v Pacific Hydro Ltd, the turnkey contract included a choice of law provision, selecting the law of the Philippines, and a clause providing that all disputes arising out of or in connection with the agreement were to be arbitrated under the ICC Rules, with the seat in Singapore. Hearings were in fact conducted in Melbourne, Australia, although all awards were published in Singapore. The result of this cases that it would not be appropriate for an Australian court to adjudicate claims for misrepresentation under Australian statutes dealing with misleading and deceptive conduct, once the arbitral tribunal had determined, applying appropriate choice of law rules, that such claims are governed by the law of the Philippines. To do so would lead to a multiplicity of proceedings, usurp the jurisdiction of the tribunal and deny the intention of the parties as expressed by them in the arbitration agreement. In short, the Internationally Mandatory Rules as an active part of public order create limitation of party autonomy in choice of law rules in a different way. The court is fully entitled to refuse to use those rules of law applicable on the contract which are in the contradiction to the internationally mandatory rules of law of the forum. And the court may give an effect to those Internationally Mandatory Rules that form a part of a law of foreign country when deciding about applicability of certain rules of applicable law.

  • PDF

Characteristics of MOCVD Cobalt on ALD Tantalum Nitride Layer Using $H_2/NH_3$ Gas as a Reactant

  • Park, Jae-Hyeong;Han, Dong-Seok;Mun, Dae-Yong;Yun, Don-Gyu;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.377-377
    • /
    • 2012
  • Microprocessor technology now relies on copper for most of its electrical interconnections. Because of the high diffusivity of copper, Atomic layer deposition (ALD) $TaN_x$ is used as a diffusion barrier to prevent copper diffusion into the Si or $SiO_2$. Another problem with copper is that it has weak adhesion to most materials. Strong adhesion to copper is an essential characteristic for the new barrier layer because copper films prepared by electroplating peel off easily in the damascene process. Thus adhesion-enhancing layer of cobalt is placed between the $TaN_x$ and the copper. Because, cobalt has strong adhesion to the copper layer and possible seedless electro-plating of copper. Until now, metal film has generally been deposited by physical vapor deposition. However, one draw-back of this method is poor step coverage in applications of ultralarge-scale integration metallization technology. Metal organic chemical vapor deposition (MOCVD) is a good approach to address this problem. In addition, the MOCVD method has several advantages, such as conformal coverage, uniform deposition over large substrate areas and less substrate damage. For this reasons, cobalt films have been studied using MOCVD and various metal-organic precursors. In this study, we used $C_{12}H_{10}O_6(Co)_2$ (dicobalt hexacarbonyl tert-butylacetylene, CCTBA) as a cobalt precursor because of its high vapor pressure and volatility, a liquid state and its excellent thermal stability under normal conditions. Furthermore, the cobalt film was also deposited at various $H_2/NH_3$ gas ratio(1, 1:1,2,6,8) producing pure cobalt thin films with excellent conformality. Compared to MOCVD cobalt using $H_2$ gas as a reactant, the cobalt thin film deposited by MOCVD using $H_2$ with $NH_3$ showed a low roughness, a low resistivity, and a low carbon impurity. It was found that Co/$TaN_x$ film can achieve a low resistivity of $90{\mu}{\Omega}-cm$, a low root-mean-square roughness of 0.97 nm at a growth temperature of $150^{\circ}C$ and a low carbon impurity of 4~6% carbon concentration.

  • PDF

Synthesis and Characterization of Soluble Co-polyimides for Biogas Purification (바이오가스 정제용 용해성 폴리이미드 공중합체의 합성과 특성분석)

  • Shin, So Ra;Han, Sang Hoon;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.231-238
    • /
    • 2015
  • Co-polyimide membranes were prepared by two-step polymerization using semi-alicyclic 5-(2,5-dioxotetrahydrofuryl)-3-methyl-cyclohexene-1,2-dicarboxylic anhydride (DOCDA) with five diamines such as 2,5-dimethyl-1,4-phenylene diamine (2M), 2,4,6-trimethyl-1,3-phenylene diamine (3M), 1,5-naphthalene diamine (NDA), 4,4-diaminodiphenyl methane (MDA), 4,4'-diaminodiphenyl ether (ODA). Synthesized co-polyimides were characterized by FT-IR, viscosity, solubility, DSC, TGA and gas permeation properties, compared with 6FDA-based co-polyimides. All co-polyimides had the intrinsic viscosity of 0.32~0.58 and excellent solubility in various solvents. DOCDA-based co-polyimides had thermal stability over $400^{\circ}C$ although those were lower than 6FDA-based co-polyimides. Gas permeabilities of the copolyimide membranes were measured for $CO_2$ and $CH_4$ at room temperature and presented the trade-off relationship.

Evaluation of the Impact of Fuel Economy by Each of Driving Modes for Medium-Size Low-Floor Bus (중형저상버스의 개별주행모드에 따른 연료소비율 평가)

  • Jung, Jae-wook;Ro, Yun-sik;Ahn, Byong-kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.133-140
    • /
    • 2016
  • The Ministry of Land, Infrastructure and Transport has introduced low-floor buses, which are convenient for passengers getting on and off the bus and for the handicapped. The standard bus model is 11 m long and uses compressed natural gas (CNG). However, this model has drawbacks in narrow rural road conditions such as those in farming and fishing villages and mountainous areas, as well as difficulty in refueling since CNG facilities are not readily available. In this study, running resistance values were obtained by coasting performance tests on actual roads using a Tata Daewoo LF-40 model with three different weight conditions: curb vehicle weight (CVW), half vehicle weight (HVW), and gross vehicle weight (GVW).The test methods include WHVC, NIER-06, and constant-speed driving at 60 km/h. These tests were used to measure the fuel economy of vehicles other than the target vehicles to obtain the combined fuel economy. The energy efficiency was highest in the case of CVW. In the WHVC mode, the fuel consumption rates of HVW and GVW were typically 3.5% and 12% higher than that of CVW, respectively. In constant-speed driving, the fuel efficiency of HVW was higher than that of CVW. Further research is required to analyze the exhaust gas data.

Greenhouse Gas Reduction from Paddy by Environmentally-Friendly Intermittent Irrigation: A Review (환경 친화적인 간단관개를 통한 논에서의 온실가스 저감)

  • Choi, Joongdae;Uphoff, Norman;Kim, Jonggun;Lee, Suin
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.43-56
    • /
    • 2019
  • Irrigated and flooded rice paddy contributes to the greenhouse gas emissions (GHG) that affect climate. This in turn affects the supply and reliability of the water needed for rice production. This dynamic makes current rice production methods foreseeably less sustainable over time while having other undesirable effects. Intermittent irrigation by a means of the system of rice intensification (SRI) and alternate wetting and drying (AWD) methods was reviewed to reduce global warming potential (GWP) from 29% to 90% depending on site-specific characteristics from flooded rice paddy and analyzed to be a promising option for enhancing the productivity of water as well, an increasingly constraining resource. Additional benefits associated with the SRI/AWD can be less arsenic in the grain and less degradation of water quality in the run-off from rice paddies. Adoption and expansion of intermittent irrigation of SRI/AWD may require costly public and private investments in irrigation infrastructure that can precisely make irrigation control, and the involvement and upgrading of water management agencies and farmer organizations to enhance management capabilities. Private and public collaboration as a means of earning carbon credit under the clean-development mechanism (CDM) with SRI/AWD for industries to meet as a part of their GHG emission quota as well as a social contribution and publicity program could contribute to adopt intermittent irrigation and rural investment and development. Also, inclusion of SRI and AWD in programs designed under CDM and/or in official development assistance (ODA) projects could contribute to climate-change mitigation and help to achieve UN sustainable development goals (SDGs).