• Title/Summary/Keyword: Off-design performance

Search Result 908, Processing Time 0.027 seconds

Performance Analysis of the Composite Distributed Directories for High Performance Grid Information Services (고성능 자원정보서비스 구축을 위한 복합 모델 기반 분산 디렉토리의 성능 분석)

  • 권성호;김희철
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.3-6
    • /
    • 2003
  • In this paper, we conduct a performance analysis for the composite scheme that is obtained by combining the data distribution and the data replication schemes usually used for the implementation of distributed directory service systems. The analysis results reveal that the composite model is a viable option to overcome the performance trade-off between the data distribution and the data replication model. In this paper, we present the performance model developed for the composite model by appling queuing modelling. Using the performance model, performance values for a variety of system execution environments are suggested which enable us to bring an efficient design for high performance distributed directories.

  • PDF

Energy-Efficient Scheduling with Individual Packet Delay Constraints and Non-Ideal Circuit Power

  • Yinghao, Jin;Jie, Xu;Ling, Qiu
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2014
  • Exploiting the energy-delay tradeoff for energy saving is critical for developing green wireless communication systems. In this paper, we investigate the delay-constrained energy-efficient packet transmission. We aim to minimize the energy consumption of multiple randomly arrived packets in an additive white Gaussian noise channel subject to individual packet delay constraints, by taking into account the practical on-off circuit power consumption at the transmitter. First, we consider the offline case, by assuming that the full packet arrival information is known a priori at the transmitter, and formulate the energy minimization problem as a non-convex optimization problem. By exploiting the specific problem structure, we propose an efficient scheduling algorithm to obtain the globally optimal solution. It is shown that the optimal solution consists of two types of scheduling intervals, namely "selected-off" and "always-on" intervals, which correspond to bits-per-joule energy efficiency maximization and "lazy scheduling" rate allocation, respectively. Next, we consider the practical online case where only causal packet arrival information is available. Inspired by the optimal offline solution, we propose a new online scheme. It is shown by simulations that the proposed online scheme has a comparable performance with the optimal offline one and outperforms the design without considering on-off circuit power as well as the other heuristically designed online schemes.

Numerical Analysis of Thermal and Flow Characteristics for an Optimum Design of Automotive Catalytic Converter (자동차용 촉매변환기의 최적설계를 위한 열 및 유동특성에 대한 수치적 연구)

  • Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.841-855
    • /
    • 1999
  • In the present work, the effect of a flow maldistribution on the thermal and conversion response of 8 monolith catalytic converter is Investigated. To achieve this goal, a combined chemical reaction and multi-dimensional fluid dynamic mathematical model has been developed. The present results show that flow uniformity within the monolith brick has 8 great impact on light-off performance of the catalytic converter. In the case of lower flow uniformity, large portions of the monolith remain cold due to locally concentrated high velocities and CO, HC are unconverted during warm-up period, which loads to retardation of light-off. It has been also found that the heat-up pattern of the monolith ill similar to the flow distribution profile, In the early stage of the reaction. It may be concluded that flow maldistribution can cause a significant retardation of the light-off and hence can eventually worsen tho conversion efficiency of automotive catalytic converter.

A Study on Design of Production System Using Multiple Characteristics Robust Design in Uncertain Environment (불확실한 환경에서의 다특성치 강건설계를 이용한 생산시스템 설계에 관한 연구)

  • 양광모;서장훈;박진홍;강경식
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.61-65
    • /
    • 2004
  • As technique that can contribute in quality improvement in design process to overcome shortcoming of traditional quality control, call design or development department quality control activity that is achieved to reduce gun damage shuddering at circle minimizing change or side effect of product performance as off-line quality control. This paper discuss optimal process design of investment projects expansion and replacement investment on each line or individual in the production. Generally optimal plant design has add to a few method by Subsidiary means with use a especial method. And then in this paper, a Robust design is presented, which may be effective to the processes appraisal or improvement. We propose that should make a optimal plant design model for reducing field failure rate to assign by real data on different factors in plant system. Using this model, robust design of taguchi method used in this comprehensive method for reducing field failure rate in plant system.

  • PDF

Test and Evaluation of the Propeller Developed for a Multi-copter with the Take-off Weight of 25 kg (이륙 중량 25 kg급 멀티콥터용 프로펠러 시험 평가)

  • Kang, Hee Jung;Kim, Taejoo;Wee, Seong-Yong
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.26-34
    • /
    • 2018
  • Structural static test and the performance test were conducted to determine whether the propeller developed for a multi-copter with the take-off weight of 25 kg satisfies the design requirement. The result of the structural test revealed that the propeller had a safety margin of 3 or more as the ultimate load and requirement load did not cause the specimen breakage. In the performance test, the propeller generated the hover thrust and maximum thrust of design requirement, and hover efficiency in the operating thrust range was greater than 0.73. Maximum hover efficiency increased by more than 3% compared to the reference propeller and electric power consumption decreased by more than 4% in the operating range. The propeller was found to be successfully developed based on the satisfaction rate of the structural strength requirement and the performance requirement.

The Design and Analysis of Composite Advanced Propeller Blade for Next Generation Turboprop Aircraft (차세대 터보프롭 항공기용 복합재 최신 프로펠러 설계 및 해석)

  • Choi, Won;Kim, Kwang-Hae;Lee, Won-Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.11-17
    • /
    • 2012
  • The one way fluid structure interaction analysis on advanced propeller blade for next generation turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point. Blade sweep is designed based on the design mach number and target propulsion efficiency. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and showed the enhanced performance than the conventional propeller. The skin-foam sandwich structural type is adopted for blade. The high stiffness, strength carbon/epoxy composite material is used for the skin and PMI(Polymethacrylimide) is used for the foam. Aerodynamic load is calculated by computational fluid dynamics. Linear static stress analysis is performed by finite element analysis code MSC.NASTRAN in order to investigate the structural safety. The result of structural analysis showed that the design has sufficient structural safety. It was concluded that structural safety assessment should incorporate the off-design points.

Separation Purification Characteristics of Rinsing Solution in Semiconductor Process using Bigh Performance Polymer Membranes ( I ) (기능성 고분자막을 이용한 반도체 공정 세정액의 분리정제특성 (I))

  • Lee Jae-Dal;Hong Young-Ki;Ro Duck-Kil;Bae Kie-Seo
    • Textile Coloration and Finishing
    • /
    • v.17 no.3 s.82
    • /
    • pp.34-42
    • /
    • 2005
  • In this work, a practical separation performance was investigated on aqueous alcohol solutions, especially for iso-propyl alcohol (IPA), which is usually used during the semi- conductor rinsing process. The removal of various substances from waste aqueous IPA solutions was carried out by microfiltration with $0.1\~1{\mu}$m pore size of mean diameter as a pre-filter. Permeability and molecular weight cut-off of the functional polysulfone(PSf) ultrafiltration membrane to purify waste aqueous IPA solutions were measured through the ultrafiltration test. The solute rejection of PSf membrane had $92\%$ in 1,000ppm aqueous PEG solution with PEG molecular weight 10,000, the molecular weight cut-off had 10,000. The IPA concentration on the $CMPA-K^+$ membrane performance using pervaporation module system could be increased from $95.04 wt\%$ to more than $98.50wt\%$ in about 9hr at operation temperature of $70^{\circ}C$ using the pervaporation module system.

CReMeS: A CORBA COmpliant Reflective Memory based Real-time Communication Service

  • Chung, Sun-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10B
    • /
    • pp.1675-1689
    • /
    • 2000
  • We present CReMeS a CORBA-compliant design and implementation of a new real-time communication service. It provides for efficient predictable and scalable communication between information producers and consumers. The CReMeS architecture is based on MidART's Real-Time Channel-based Reflective Memory (RT-CRM) abstraction. This architecture supports the separation of QoS specification between producer and consumer of data and employs a user-level scheduling scheme for communicating real-time tasks. These help us achieve end-to-end predictability and allows our service to scale. The CReMeS architecture provides a CORBA interface to applications and demands no changes to the ORB layer and the language mapping layer. Thus it can run on non real-time Off-The-Shelf ORBs enables applications on these ORBs to have scalable and end-to-end predictable asynchronous communication facility. In addition an application designer can select whether to use an out-of-band channel or the ORB GIOP/IIOP for data communication. This permits a trade-off between performance predictability and reliability. Experimental results demonstrate that our architecture can achieve better performance and predictability than a real-time implementation of the CORBA Even Service when the out-of-band channel is employed for data communication it delivers better predictability with comparable performance when the ORB GIOP/IIOP is used.

  • PDF

Study on Component Map Scaling Technique Using a Gas Turbine Test Unit (가스터빈 시험장치를 이용한 구성품 성능선도 축척기법에 관한 연구)

  • 공창덕;고성희;기자영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.105-109
    • /
    • 2003
  • A new scaling method for the prediction of gas turbine components characteristics using experimental data of gas turbine test unit has been proposed. In order to minimize the analyzed performance error in the this study, firstly component maps were constructed by real experimental performance data at some operating conditions and a polynomial obtained from scaling factors at given conditions, and then the simulated performance using the identified maps was compared with the performance result using the currently used traditional scaling method. In comparison, the performance analysis result by the currently used traditional scaling method was met well agreed with the real engine performance at most off-design points except for the design point. However the performance analysis result using the newly proposed scaling method had good agreement with the experimental results within maximum 5% error.

  • PDF

Numerical Studies on the Performance Prediction of a Turbopump System for Liquid Rocket Engines (액체로켓용 터보펌프 성능예측에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Lee, Gee-soo;Kim, Jin-han;Yang, Soo-Seok;Lee, Dae-sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.2 s.15
    • /
    • pp.15-21
    • /
    • 2002
  • The hydraulic performance analysis of an entire pump system composed of inducer, impeller, volute and seal for the application of turbopumps is numerically performed using three-dimensional Navier-Stokes equations. A quasi-steady mixing-plane method is used on the impeller/volute interface to simulate the unsteady interaction phenomena. From this work, the effects of each component on the pump performance are investigated at design and off-design conditions through the analysis of flow structures and loss mechanisms. The computational results are in a good agreement with experimental ones in terms of the headrise and efficiency even though very complex flow structures are present. It is found that the asymmetric pressure distribution along the volute wall constitutes the main reason of the difference between experimental and computational results, due to the limitation of the quasi-steady method. Since the volute was found to be over-designed by the pressure distribution of the volute wall, re-design of the volute has been performed, resulting in an improved performance characteristic.