• Title/Summary/Keyword: Off-cycle

Search Result 475, Processing Time 0.039 seconds

Knowledge-based Approximate Life Cycle Assessment System in a Collaborative Design Environment (협업설계 환경에서의 지식기반 근사적 전과정평가 시스템)

  • 박지형;서광규;이석호;이영명
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.877-880
    • /
    • 2003
  • In a competitive and globalized business environment, the need for the green products becomes stronger. To meet these trends, the environmental assessment besides delivery, cost and quality of products should be considered as an important factor in new product development phase. In this paper. a knowledge-based approximate life cycle assessment system (KALCAS) for the collaborative design environment is developed to assess the environmental impacts in context of product concept development. It aims at improving the environmental efficiency of the product using artificial neural networks consisting of high-level product attributes and LCA results. The overall framework of the collaborative environment including KALCAS is proposed. This architecture uses the CO environment to allow users on a wide variety of platforms to access the product data and other related information. It enables us to trade-off the evaluation results between the objectives of the product development including the approximate environmental assessment in the collaborative design environment.

  • PDF

A Cycle-Accurate Simulation Environment for Shader Architecture (쉐이더 구조를 위한 마이크로 아키텍쳐 시뮬레이션 환경)

  • Han Sang-Won;Lee Won-Jong;Han Tack-Don
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.196-198
    • /
    • 2006
  • Shader architecture is one of the fastest growing fields in the ever advancing 3D graphics, and massive amounts of Ideas and technologies are being introduced to the market continuously. In this paper, we present a flexible cycle-accurate simulation environment to accelerate and alleviate the process of developing and verifying these ideas and technologies. Combination of 3D graphics API and hardware simulator allows OpenGL applications to be emulated off-the-shelf for a given shader micro-architecture. Easily modified parameters allow the simulation environment to be tailored to specific demands or requirements.

  • PDF

A power-reduction technique and its application for a low-voltage CMOS operational amplifier (저전압용 CMOS 연산 증폭기를 위한 전력 최소화 기법 및 그 응용)

  • 장동영;이용미;이승훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.6
    • /
    • pp.37-43
    • /
    • 1997
  • In this paper, an analog-domain powr-reduction technique for a low-voltage CMOS operational amplifier and its application to clock-based VLSI systems are proposed. The proposed technique cuts off the bias current of the op amp during a half cycle of the clock in the sleeping mode and resumes the curent supply sequentially during the remaining cycle of the clock in the normal operating mode. The proposed sequential sbiasing technique reduces about 50% of the op amp power and improves the circuit performance through high phase margin and stable settling behavior of the output voltage. The power-reduction technique is applied to a sample-and-hold amplifier which is one of the critical circuit blocks used in the front-end stage of analog and/or digital integrated systems. The SHA was simulated and analyzed in a 0.8.mu.m n-well double-poly double-metal CMOS technology.

  • PDF

Development of Strength Evaluation Methodology for Independent IMO TYPE C Tank with LH2 Carriers

  • Beom-Il, Kim ;Kyoung-Tae Kim;Shafiqul Islam
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.87-102
    • /
    • 2024
  • Given the inadequate regulatory framework for liquefied hydrogen gas storage tanks on ships and the limitations of the IGC Code, designed for liquefied natural gas, this study introduces a critical assessment procedure to ensure the safety and suitability of such tank designs. This study performed a heat transfer analysis for boil-off gas (BOG) calculations and established separate design load cases to evaluate the yielding and buckling strength. In addition, the study assessed methodologies for both high-cycle and low-cycle fatigue assessments, complemented by comprehensive structural integrity evaluations using finite element analysis. A comprehensive approach was developed to assess the structural integrity of Type C tanks by conducting crack propagation analysis and comparing these results with the IGC Code criteria. The practicality and efficacy of these methods were validated through their application on a 23K-class liquefied hydrogen carrier at the concept design stage. These findings may have important implications for enhancing safety standards and regulatory policies.

Performance Analysis of Gas Turbine for Large-Scale IGCC Power Plant

  • Joo, Yong-Jin;Kim, Mi-Yeong;Park, Se-Ik;Seo, Dong-Kyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.415-419
    • /
    • 2016
  • As the need for clean coal technology has grown, so has the global research and development efforts into integrated gasification combined cycle (IGCC) plants. An IGCC plant couples a gas turbine to a gasification block. Various technical and economic problems exist in designing such a system. One such problem is the difficulty in realizing economies of scale because the single-train flow capacity of commercial IGCC synthetic gas turbine plants is limited; the capacity does not exceed a net power rating of 300 MW. To address this problem, this study modeled and simulated a synthetic gas turbine with the goal of evaluating the feasibility of a 500 MW or larger IGCC plant. First, a gas turbine with the best output and efficiency was chosen for use with natural gas. The turbine was modeled using GateCycle (a simulation tool), and the integrity of the model validated by comparing the result to the design value. Next, off-design modeling was carried out for a gas turbine with synthetic gas based on its on-design model, and the result was compared with the study result of the gas turbine manufacturer. The simulation confirmed that it is possible to create a large capacity IGCC plant by undertaking the remodeling of a gas turbine designed to use natural gas into one suitable for synthetic gas.

A Design Study for Improving Thermal Efficiency of Combined Cycle Power Plants using LNG Cold Energy - Design and Off-design Modelling of Gas-turbine Based Combined Cycle - (LNG 냉열을 이용한 복합발전 플랜트의 성능향상에 관한 연구(I) - 복합화력 발전플랜트의 설계점 및 탈설계점 모델링 -)

  • 오세기;김병일
    • Journal of Energy Engineering
    • /
    • v.8 no.1
    • /
    • pp.159-165
    • /
    • 1999
  • 복합화력 발전플랜트의 운전에서 특히 하절기의 첨두부하시에 외기온도의 상승으로 인한 가스터빈의 출력 감소를 해결하기 위한 방법으로 LNG 연료가 보유하고 있는 냉열을 이용하여 압축기로 유입되는 공기 온도를 감소시키는 냉각시스템의 개념을 개발하고자 복합화력 발전플랜트에 대한 설계점 및 외기온도 변화에 대한 탈설계점 모델링 연구를 수행하였다. 대상 프랜트는 940 MW 서인천 복합 발전플랜트 모듈의 단위 블록을 선택하였으며 발전플랜트 전용 해석코드인 GateCycle을 이용하여 가스터빈과 증기사이클의 주요 기기 들에 대한 모델을 개발하였다. 개발된 모델의 결과를 대상플랜트의 시운전결과와 비교하여 모델의 적정성을 검증하였다. 출력, 효율, 온도 및 유량 등 주요 설계인자들이 최대 ~1.3%의 상대오차 범위 안에서 만족할 만한 신뢰도를 갖는 것을 확인하였다. 탈설계점 성능해석은 본 논문과 관련한 연구의 주목적인 LNG 냉열에 의한 유입공기 냉각시스템 설계시의 경계변수인 외기온도 증가에 대한 각 사이클의 특성변화를 대상으로 하였다. 종합적으로 외기온도가 증가하면 압축기로 유입되는 공기의 양과 이에 대응하는 소요 연료량이 동시에 감소하므로 연소에 따른 가스터빈의 팽창비가 감소한다. 이로 인하여 외기온도 증가시에 가스터빈 출력감소율은 0.5%/$^{\circ}C$로서 배기가스를 이용하는 증기사이클의 출력감소율 0.2%/$^{\circ}C$에 비해 민감하므로 가스터빈 유입공기의 냉각시스템의 설계는 복합화력발전 플랜트의 효율 향상에 크게 기여할 것으로 예상된다.

  • PDF

Performance Analysis of a Gas Turbine for Power Generation Using Syngas as a Fuel (Syngas를 연료로 사용하는 발전용 가스터빈의 성능해석)

  • Lee, Jong-Jun;Cha, Kyu-Sang;Sohn, Jeong-Lak;Joo, Yong-Jin;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.54-61
    • /
    • 2008
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed of hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of using syngas in a gas turbine, originally designed for natural gas fuel, on its performance. A commercial gas turbine is selected and variations of its performance characteristics due to adopting syngas is analyzed by simulating off-design gas turbine operation. Since the heating value of the syngas is lower, compared to natural gas, IGCC plants require much larger fuel flow rate. This increases the gas flow rate to the turbine and the pressure ratio, leading to far larger power output and higher thermal efficiency. Examination of using two different syngases reveals that the gas turbine performance varies much with the fuel composition.

Design and Implementation of Plant's Life Cycle Educational Application (식물의 한살이 교육용 어플리케이션 설계 및 구현)

  • Kim, Kapsu;Kim, Hyosung
    • Journal of The Korean Association of Information Education
    • /
    • v.17 no.3
    • /
    • pp.357-365
    • /
    • 2013
  • The purpose of this paper is to implement the educational application related to the Plant's Life Cycle Unit in 4th Grade Science Textbook, based on the National Curriculum. This should lead to teachers incorporating them into classes and for students to get practical help when they are studying about plants. Through this application, teachers will be able to experience the so-called Blended Learning while using both off-line and mobile teaching methods. It will also be possible for students to review what they learn during the classes and do their projects regardless of time and place. This type of learning is expected to motivate learners and enhance the learning experience by stimulating the students' interest.

Physiology of sleep (수면의 생리)

  • Chae, Kyu Young
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.8
    • /
    • pp.711-717
    • /
    • 2007
  • Sleep is a vital, highly organized process regulated by complex systems of neuronal networks and neurotransmitters. Normal sleep comprises non-rapid eye movement (NREM) and REM periods that alternate through the night. Sleep usually begins in NREM and progresses through deeper NREM stages (2, 3, and 4 stages), but newborns enter REM sleep (active sleep) first before NREM (quiet sleep). A period of NREM and REM sleep cycle is approximately 90 minutes, but newborn have a shorter sleep cycle (50 minutes). As children mature, sleep changes as an adult pattern: shorter sleep duration, longer sleep cycles and less daytime sleep. REM sleep is approximately 50% of total sleep in newborn and dramatically decreases over the first 2 years into adulthood (20% to 25%). An initial predominant of slow wave sleep (stage 3 and 4) that peaks in early childhood, drops off abruptly after adolescence by 40% from preteen years, and then declines over the life span. The hypothalamus is recognized as a key area of brain involved in regulation of sleep and wakefulness. The basic function of sleep largely remains elusive, but it is clear that sleep plays an important role in the regulation of CNS and body physiologic processes. Understanding of the architecture of sleep and basic mechanisms that regulate sleep and wake cycle are essential to evaluate normal or abnormal development of sleep pattern changes with age. Reduction or disruption of sleep can have a significant impact on daytime functioning and development, including learning, growth, behavior, and emotional regulation.

Flux Regulation Patterns and Energy Audit of E. coli B/r and K-12

  • Lee, Jin-Won;Goel, Akshay;Ataai, Mohammad-M.;Domach, Michael-M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.258-267
    • /
    • 2002
  • A flux determination methodology has been built which enables to develop constrained stoichiometric relationships and metabolic balances. The analysis differs from those developed for anaerobic growth conditions in that cell mass formation is a significant sink for carbon. When combined with experimental measurements, a determined system of equations results yielded tricarboxylic acid (TCA) cycle and glycolytic fluxes. The methodology was implemented to determine the fluxes of E. coli B/r and K12, and it was found that as the growth rate in a glucose minimal medium increased, the cells became increasing glycolytic and the TCA fluxes either leveled off or declined. The pattern identified for the TCA fluxes corresponded to ${\alpha}$-ketoglutarate dehydrogenase's induction-repression pattern, thereby suggesting that the induction-repression of the enzyme could result in significant flux changes. When the minimum flux solution was contrasted to the glycolytic and TCA fluxes determined, two observations were made. First, the minimum flux could provide the cell's biosynthetic ATP requirements. Second, at a high growth rate in a glucose medium, the excess glycolytic flux exceeded that of the TCA cycle, which appeared to more closely match the biosynthetic needs.