• Title/Summary/Keyword: Off-Design Conditions

Search Result 364, Processing Time 0.022 seconds

Design and Self-sustainable Operation of 1 kW SOFC System (1kW 고체산화물 연료전지(SOFC) 시스템 설계 및 자열운전)

  • Lee, Tae-Hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Young-Sung;Nam, Suk-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.5
    • /
    • pp.384-389
    • /
    • 2009
  • KEPRI (Korea Electric Power Research Institute) has studied planar type solid oxide fuel cell (SOFC) stacks using anode-supported cells and kW class co-generation systems for residential power generation. In this work, a 1 kW SOFC system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a SOFC stack made up of 48 cells, a fuel reformer, a catalytic combustor, and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation in that system. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. When the 1 kW SOFC stack was tested using hydrogen at $750^{\circ}C$, the stack power was about $1.2\;kW_e$ at 30 A and $1.6\;kW_e$ at 50 A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about $1.3\;kW_e$ with hydrogen and $1.2\;kW_e$ with city gas respectively. The system also recuperated heat of about $1.1\;kW_{th}$ by making hot water.

Design of Control System for Organic Flight Array based on Back-stepping Controller (Backstepping 기법을 이용한 유기적 비행 어레이의 제어시스템 설계)

  • Oh, Bokyoung;Jeong, Junho;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.711-723
    • /
    • 2017
  • This paper proposes a flight control system for an organic flight array(OFA) which has a new configuration to consist of multi modularized ducted-fan unmanned aerial vehicles (UAVs). The OFA is able to apply to various missions such as indoor reconnaissance, communication relay, and radar jamming by using capability of hover flight. The OFA has a distinguished advantage due to reconfigurable structure to assemble or separate with respect to its missions or operational conditions. A dynamic modelling of the OFA is derived based on equations of motion of the single ducted-fan modules. In order to apply nonlinear control method, an affine system of attitude dynamics is derived. Moreover, the control system is composed of a back-stepping controller for attitude control and a PID controller for position control. Then the performance of the proposed controller is verified via a numerical simulation under wind disturbance.

Study on Inverse Modeling of a Turboprop in High Altitude Operation using Engine Performance Data (성능데이터를 이용한 고고도운용 터보프롭엔진 역모델링 연구)

  • Kong, Chang-Duk;Lim, Se-Myeong;Kim, Ji-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.16-22
    • /
    • 2010
  • The gas turbine engine performance relies greatly on its component performance characteristics. Generally, engine manufacturers do not provide engine purchasers the component performance characteristics which can be obtained by lots of experimental tests at various operating conditions and big amount of expenses. In previous works the component maps have mostly been generated by scaling from a similar component map. However this scaling method has large error at off design points, specially in high altitude operation. Therefore this work proposes an inverse modeling method that can generate components maps of PT6A-67A turboprop engine using performance data provided by the engine manufacturer. In addition, evaluation can be made through comparison between performance analysis results using the performance simulation program including the generated compressor map and performance data.

Numerical modeling of brittle failure of the overstressed rock mass around deep tunnel (심부 터널 주변 과응력 암반의 취성파괴 수치모델링)

  • Lee, Kun-Chai;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.469-485
    • /
    • 2016
  • The failure of rock mass around deep tunnel, different from shallow tunnel largely affected by discontinuities, is dominated by magnitudes and directions of stresses, and the failures dominated by stresses can be divided into ductile and brittle features according to the conditions of stresses and the characteristics of rock mass. It is important to know the range and the depth of the V-shaped notch type failure resulted from the brittle failure, such as spalling, slabbing and rock burst, because they are the main factors for the design of excavation and support of deep tunnels. The main features of brittle failure are that it consists of cohesion loss and friction mobilization according to the stress condition, and is progressive. In this paper, a three-dimensional numerical model has been developed in order to simulate the brittle behavior of rock mass around deep tunnel by introducing the bi-linear failure envelope cut off, elastic-elastoplastic coupling and gradual spread of elastoplastic regions. By performing a series of numerical analyses, it is shown that the depths of failure estimated by this model coincide with an empirical relation from a case study.

Development of Knee Ankle Foot Orthosis for Gait Rehabilitation Training using Plantaflexion and Knee Extension Torque (족저굴곡과 무릎 신전 토크를 이용한 보행 재활 훈련용 장하지 보조기 개발)

  • Kim, Kyung;Kim, Jae-Jun;Heo, Min;Jeong, Gu-Young;Ko, Myoung-Hwan;Kwon, Tae-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.948-956
    • /
    • 2010
  • The purpose of this study was to test the effectiveness of a prototype KAFO (Knee-Ankle-Foot Orthosis) powered by two artificial pneumatic muscles during walking. We had previously built powered AFO (Ankle-Foot Orthosis) and KO (Knee Orthosis) and used it effectively in studies on assistance of plantaflexion and knee extension motion. Extending the previous study to a KAFO presented additional challenges related to the assistance of gait motion for rehabilitation training. Five healthy males were performed gait motion on treadmill wearing KAFO equipped with artificial pneumatic muscles to power ankle plantaflexion and knee extension. Subjects walked on treadmill at 1.5 km/h under four conditions without extensive practice: 1) without wearing KAFO, 2) wearing KAFO with artificial muscles turned off, 3) wearing KAFO powered only in plantaflexion under feedforward control, and 4) wearing KAFO powered both in plantaflexion and knee extension under feedforward control. We collected surface electromyography, foot pressure and kinematics of ankle and knee joint. The experimental result showed that a muscular strength of wearing KAFO powered plnatarfexion and knee extension under feedforward control was measured to be lower due to pneumatic assistance and foot pressure of wearing KAFO powered plnatarfexion and knee extension under feedforward control was measured to be greater due to power assistance. In the result of motion analysis, the ankle angle of powered KAFO in terminal stance phase was found a peak value toward plantaflexion and there were difference of maximum knee flexion range among condition 2, 3 and 4 in mid-swing phase. The current orthosis design provided plantaflexion torque of ankle jonit in terminal stance phase and knee extension torque of knee joint in mid-swing phase.

Characteristics of the Water Pressure Drop Considering Heat Transfer in the Evaporator and Condenser of a Water Chiller (냉수공장에서 열전달을 고려한 응축기와 증발기의 물 압력강하 특성)

  • Nguyen, Minh Phu;Lee, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1293-1300
    • /
    • 2011
  • The configurations of the evaporator and condenser of a water chiller can be determined from the trade-off between the heat transfer area, which is related to the capital cost and the pressure drop, which is associated with the operational cost. In this study, the design of the water chiller focused on minimizing the water pressure drop of both condenser and evaporator for given cooling capacity and requirements. Commercial enhanced tubes were employed to simulate real-life conditions. The results of the present analysis were compared with those obtained by HTRI software for verifying them. The results indicated that a reduction in the water pressure drop, which is associated with the short length of a tube, can be effected by decreasing the number of tube passes and increasing the number of tubes and the tube diameter. However, using a large number of tubes with smaller diameters can reduce the capital cost because the tubes are short. The reduction of the capital cost is due to the fact that a small-diameter tube has low internal thermal resistance and hence contributes to a decrease in the overall thermal resistance per unit length.

Study of a Low-Temperature Bonding Process for a Next-Generation Flexible Display Module Using Transverse Ultrasound (횡 초음파를 이용한 차세대 플렉시블 디스플레이 모듈 저온 접합 공정 연구)

  • Ji, Myeong-Gu;Song, Chun-Sam;Kim, Joo-Hyun;Kim, Jong-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.395-403
    • /
    • 2012
  • This is direct bonding many of the metal bumps between FPCB and HPCB substrate. By using an ultrasonic horn mounted on an ultrasonic bonding machine, it is possible to bond gold pads onto the FPCB and HPCB at room temperature without an adhesive like ACA or NCA and high heat and solder. This ultrasonic bonding technology minimizes damage to the material. The process conditions evaluated for obtaining a greater bonding strength than 0.6 kgf, which is commercially required, were 40 kHz of frequency; 0.6MPa of bonding pressure; and 0.5, 1.0, 1.5, and 2.0 s of bonding time. The peel off test was performed for evaluating bonding strength, which was found to be more than 0.80 kgf.

Dynamic Behavior of Regulatory Elements in the Hierarchical Regulatory Network of Various Carbon Sources-Grown Escherichia coli

  • Lee, Sung-Gun;Hwang, Kyu-Suk;Kim, Cheol-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.551-559
    • /
    • 2005
  • The recent rapid increase in genomic data related to many microorganisms and the development of computational tools to accurately analyze large amounts of data have enabled us to design several kinds of simulation approaches for the complex behaviors of cells. Among these approaches, dFBA (dynamic flux balance analysis), which utilizes FBA, differential equations, and regulatory events, has correctly predicted cellular behaviors under given environmental conditions. However, until now, dFBA has centered on substrate concentration, cell growth, and gene on/off, but a detailed hierarchical structure of a regulatory network has not been taken into account. The use of Boolean rules for regulatory events in dFBA has limited the representation of interactions between specific regulatory proteins and genes and the whole transcriptional regulation mechanism with environmental change. In this paper, we adopted the operon as the basic structure, constructed a hierarchical structure for a regulatory network with defined fundamental symbols, and introduced a weight between symbols in order to solve the above problems. Finally, the total control mechanism of regulatory elements (operons, genes, effectors, etc.) with time was simulated through the linkage of dFBA with regulatory network modeling. The lac operon, trp operon, and tna operon in the central metabolic network of E. coli were chosen as the basic models for control patterns. The suggested modeling method in this study can be adopted as a basic framework to describe other transcriptional regulations, and provide biologists and engineers with useful information on transcriptional regulation mechanisms under extracellular environmental change.

Measurement of Shear Modulus at Small Strains using Cone Pressuremeter Test (Cone Pressuremeter Test를 이용한 미소변형에서 전단변형계수 측정)

  • Yi, Chang-Tok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.135-145
    • /
    • 2005
  • Geotechnical design routinely requires that in-situ strength, stiffness of the ground be determined. In the working stress conditions, the strain level in a ground experienced by existing structures and during construction is less than about 0.1%~1%. In order to analyze the deformational behavior accurately, the in-situ testing technique which provides the reliable deformational characteristics at small strains, needs to be developed. Cone pressuremeter tests were performed on the western off-shore region of korea, and analyzed using cavity expansion theory and curve fitting technique to obtain the shear modulus at small strain level of $10^{-1}%$. The value of $E_u/S_u$ ratio for the marine clay shows about 589 at the small strain. However the value of $E_u/S_u$ estimated by lab tests are much smaller values ranged from 81 to 91. It is indicated that the curve fitting technique from CPM tests results can be used to obtain the shear modulus at small strain.

A Numerical Study on Effects of Displacement of a Variable Area Nozzle on Flow and Thrust in a Jet Engine (가변노즐의 변위가 제트 엔진의 유동 및 추력특성에 미치는 영향에 관한 수치해석)

  • Park, Junho;Sohn, Chae Hoon;Park, Dong Chang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.1-9
    • /
    • 2013
  • Variable area nozzle, where both throat and exit area vary, is required for optimal expansion and optimal nozzle shape upon operation of after-burner. Steady-state and transient analyses are carried out for each condition with and without afterburner operation and as a function of the location of the nozzle flap. Effects of that nozzle displacement on flow and thrust characteristics are analyzed from numerical results. With variable area nozzle adopted, the combustion field is variable in time, leading to periodically variable thrust. For off-design conditions, flow separation shows up due to over expansion at the flap tips and shock wave does in the nozzle due to under expansion. The undesirable phenomena can be solved by control of variable area nozzle.