• Title/Summary/Keyword: Off state stress

Search Result 39, Processing Time 0.027 seconds

Optimal switching method of SI-Thyristor using internal impedance evaluation (SI-Thyristor의 내부 임피던스 계산을 통한 최적 스위칭 제어)

  • Ju, Heung-Jin;Kim, Bong-Seok;Hwang, Hwui-Dong;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.122-122
    • /
    • 2010
  • A Static Induction Thyristor (SI-Thyristor) has a great potential as power semiconductor switch for pulsed power or high voltage applications with fast turn-on switching time and high switching stress endurance (di/dt, dV/dt). However, due to direct commutation between gate driver and SI-Thyristor, it is difficult to design optimal gate driver at the aspect of impedance matching for fast gate current driving into internal SI-Thyristor. Thus, to penetrate fast positive gate current into steady off state of the SI-Thyristor, it is proposed and proceeded the internal impedance calculation of the SI-Thyristor at steady off state with the gate driver while switching conditions that are indicated applied gate voltage, $V_{GK}$ and applied high voltage across anode and cathode, $V_{AK}$.

  • PDF

High Temperature Deformation Behavior of SiCp/2124Al Metal Matrix Composites

  • Tian, Y.Z.;Cha, Seung I.;Hong, Soon H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.69-72
    • /
    • 2002
  • The high temperature deformation behavior of SiCp/2124Al composite and 2124Al alloy was investigated by hot compression test in a temperature ranged $400~475^{\circ}C$ over a strain rate ranged $10^{-3}~1s^{-1}$. The billets of 2124Al alloy and SiCp/2124Al composite were fabricated by vacuum hot pressing process. The stress-strain curve during high temperature deformation exhibited a peak stress, and then the flow stress decreased gradually into a steady state stress with increasing the strain. It was found that the flow-softening behavior was attributed to the dynamic recovery, local dynamic recrystallization and dynamic precipitation during the deformation. The precipitation phases were identified as S' and S by TEM diffraction pattern. Base on the TEM inspection, the relationship between the Z-H parameter and subgrain size was found based on the experiment data. The dependence of flow stress on temperature and strain rate could be formulated well by a hyperbolic-sinusoidal relationship using the Zener-Hollomon parameter.

  • PDF

Torsional wave dispersion in a bi-layered hollow cylinder with inhomogeneous initial stresses caused by internal and external radial pressures

  • Akbarov, Surkay D.;Bagirov, Emin T.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.571-586
    • /
    • 2021
  • The present paper studies the influence of the inhomogeneous initial stresses in the bi-layered hollow cylinder and it is assumed that these stresses are caused by the hydrostatic pressures acting on the interior and outer free surfaces of the cylinder. The study is made by utilizing the version of the three-dimensional linearized theory of elastic waves in bodies with initial stresses for which the initial stress-strain state in bodies is determined within the scope of the classical linear theory of elasticity. For the solution to the corresponding eigenvalue problem, the discrete-analytical method is employed. Numerical results are presented and analyzed for concrete selected pairs of materials. According to these results and their analyses, it is established that, unlike homogeneous initial stresses, the influence of the inhomogeneous initial stresses on the torsional wave dispersion has not only quantitative but also qualitative character. For instance, in particular, it is established that as a result of the initial stresses caused by the hydrostatic pressure acting in the interior free surface of the cylinder, the cut-off frequency appears for the fundamental dispersive mode and the values of this frequency increase with the intensity of this pressure.

Modeling of Anisotropic Creep Behavior of Coated Textile Membranes

  • Yu Woong-Ryeol;Kim Min-Sun;Lee Joon-Seok
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.123-128
    • /
    • 2006
  • The present study aims at characterizing and modeling the anisotropic creep behavior of coated textile membrane, a class of flexible textile composites that are used for moderate span enclosures (roofs and air-halls). The objective is to develop a creep model for predicting the lifetime of coated textile membrane. Uniaxial creep tests were conducted on three off-axis coupon specimens to obtain the directional creep compliance. A potential with three parameters is shown to be adequate for modeling the anisotropic creep behavior of coated textile membrane. Furthermore, a possibility of predicting the creep deformation of coated textile membrane in a multi-axial stress state is discussed using the three-parameter potential.

Lossless Snubber with Minimum Voltage Stress for Continuous Current Mode Tapped-Inductor Boost Converters for High Step-up Applications

  • Kang, Jeong-Il;Han, Sang-Kyoo;Han, Jonghee
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.621-631
    • /
    • 2014
  • To invigorate the tapped-inductor boost (TIB) topology in emerging high step-up applications for off-grid products, a lossless snubber consisting of two capacitors and three diodes is proposed. Since the switch voltage stress is minimized in the proposed circuit, it is allowed to use a device with a lower cost, higher efficiency, and higher availability. Moreover, since the leakage inductance is fully utilized, no effort to minimize it is required. This allows for a highly productive and cost-effective design of the tapped-inductor. The proposed circuit also shows a high step-up ratio and provides relaxation of the switching loss and diode reverse-recovery. In this paper, the operation is analyzed in detail, the steady-state equation is derived, and the design considerations are discussed. Some experimental results are provided to confirm the validity of the proposed circuit.

The Photovoltaic Power Generation System with SEPIC-Flyback Converter (태양광 발전용 SEPIC-Flyback 컨버터)

  • Jung, Doo-Yong;Jang, Su-Jin;Ji, Yong-Hyuk;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.49-52
    • /
    • 2007
  • In this paper, we proposed a design photovoltaic generation systems with SEPIC-Flyback converter. The SEPIC-Flyback converter is operated to SEPIC converter the state turn-on of the switch and the state turn-off the switch is operated Flyback converter. Therefore application rate of the core increases and voltage stress of switch and transformer decreases with active clamp operation. Also we performed MPPT(Maximum Power Point Tracking) control for efficient working of Photovoltaic Dower generation system.

  • PDF

Strain-induced enhancement of thermal stability of Ag metallization with Ni/Ag multi-layer structure

  • Son, Jun-Ho;Song, Yang-Hui;Kim, Beom-Jun;Lee, Jong-Ram
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.157-157
    • /
    • 2010
  • Vertical-structure light-emitting diodes (V-LEDs) by laser lift-off (LLO) have been exploited for high-efficiency GaN-based LEDs of solid-state lightings. In V-LEDs, emitted light from active regions is reflected-up from reflective ohmic contacts on p-GaN. Therefore, silver (Ag) is very suitable for reflective contacts due to its high reflectance (>95%) and surface plasmon coupling to visible light emissions. In addition, low contact resistivity has been obtained from Ag-based ohmic contacts annealed in oxygen ambient. However, annealing in oxygen ambient causes Ag to be oxidized and/or agglomerated, leading to degradation in both electrical and optical properties. Therefore, preventing Ag from oxidation and/or agglomeration is a key aspect for high-performance V-LEDs. In this work, we demonstrate the enhanced thermal stability of Ag-based Ohmic contact to p-GaN by reducing the thermal compressive stress. The thermal compressive stress due to the large difference in CTE between GaN ($5.6{\times}10^{-6}/^{\circ}C$) and Ag ($18.9{\times}10^{-6}/^{\circ}C$) accelerate the diffusion of Ag atoms, leading to Ag agglomeration. Therefore, by increasing the additional residual tensile stress in Ag film, the thermal compressive stress could be reduced, resulting in the enhancement of Ag agglomeration resistance. We employ the thin Ni layer in Ag film to form Ni/Ag mutli-layer structure, because the lattice constant of NiO ($4.176\;{\AA}$ is larger than that of Ag ($4.086\;{\AA}$). High-resolution symmetric and asymmetric X-ray diffraction was used to measure the in-plane strain of Ag films. Due to the expansion of lattice constant by oxidation of Ni into NiO layer, Ag layer in Ni/Ag multi-layer structure was tensilely strained after annealing. Based on experimental results, it could be concluded that the reduction of thermal compressive stress by additional tensile stress in Ag film plays a critical role to enhance the thermal stability of Ag-based Ohmic contact to p-GaN.

  • PDF

Determination of plastic concrete behavior at different strain rates to determine Cowper-Symonds constant for numerical modeling

  • Nateghi, Reza;Goshtasbi, Kamran;Nejati, Hamid Reza
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.227-237
    • /
    • 2020
  • Strain rate investigations are needed to calibrate strain-rate-dependent material models and numerical codes. An appropriate material model, which considers the rate effects, need to be used for proper numerical modeling. The plastic concrete cut-off wall is a special underground structure that acts as a barrier to stop or reduce the groundwater flow. These structures might be subjected to different dynamic loads, especially earthquake. Deformability of a structure subjected to dynamic loads is a principal issue which need to be undertaken during the design phase of these structures. The characterization of plastic concrete behavior under different strain rates is essential for proper designing of cut-off walls subjected to dynamic loads. The Cowper-Symonds model, as one of the most commonly applied material models, complies well with the behavior of a plastic concretes in low to moderate strain rates and will be useful in explicit dynamics simulations. This paper aims to present the results of an experimental study on mechanical responses of one of the most useful types of plastic concrete and Cowper-Symonds constant determination procedures in a wide range of strain rate from 0.0005 to 107 (1/s). For this purpose, SHPB, uniaxial, and triaxial compression tests were done on plastic concrete samples. Based on the results of quasi-static and dynamic tests, the dynamic increase factors (DIF) of this material in different strain rates and stress state conditions were determined for calibration of the Cowper - Symonds material models.

Pulse-Mode Dynamic Ron Measurement of Large-Scale High-Power AlGaN/GaN HFET

  • Kim, Minki;Park, Youngrak;Park, Junbo;Jung, Dong Yun;Jun, Chi-Hoon;Ko, Sang Choon
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.292-299
    • /
    • 2017
  • We propose pulse-mode dynamic $R_on$ measurement as a method for analyzing the effect of stress on large-scale high-power AlGaN/GaN HFETs. The measurements were carried out under the soft-switching condition (zero-voltage switching) and aimed to minimize the self-heating problem that exists with the conventional hard-switching measurement. The dynamic $R_on$ of the fabricated AlGaN/GaN MIS-HFETs was measured under different stabilization time conditions. To do so, the drain-gate bias is set to zero after applying the off-state stress. As the stabilization time increased from $ 0.1{\mu}s$ to 100 ms, the dynamic $R_on$ decreased from $160\Omega$ to $2\Omega$. This method will be useful in developing high-performance GaN power FETs suitable for use in high-efficiency converter/inverter topology design.

Buck converter with new driving circuit in TV poer system (TV 전원장치에서 새로운 구동 회로에 의한 buck converter)

  • 정진국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.56-61
    • /
    • 1996
  • In this paper, new buck converter of a TV power system is presented. First, we devised a revised driving circuit for an emitter-coupled type buck converter, by which it is possible to reduce the material cost of transformers and voltage stress of power device. Secondly, we adopted a hybrid oscillation technique. When TV system is in off-stage, initial standby power which is necessary for remote controllable TV system is supplied by self-oscillating mode. Main power which is necessry in TV system bing on state is provided by an externally triggered oscillating mode. The switching frequency is synchronized to the oscillating frequency of horizontal deflection in TV, by which we can reduce picture noises and the size of power transformer. Thirdly, a simple error amplifier is inserted to the feed-back loop to keep the output voltage constant which means pulse width modulatio mode is added in driving part of power device. Finally, we showed by experiments that our proposed converter performs well enough to be close to the theoretically predicted values.

  • PDF