• Title/Summary/Keyword: Ofdma

Search Result 372, Processing Time 0.023 seconds

Design of Downlink Beamforming Transmitter in OFDMA/ TDD system (OFDMA/TDD 시스템의 하향링크 빔형성 송신기 설계)

  • Park Hyeong-Sook;Park Youn-Ok;Kim Cheol-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5A
    • /
    • pp.493-500
    • /
    • 2006
  • This paper presents the efficient structure and parameter optimization of downlink beamforming transmitter in OFDMA/TDD system. To design downlink beamforming transmitter for multiple transmit antennas, an efficient beamforming structure for multiple users and the choice of word-length of each block are critical in the aspect of its performance and hardware complexity. We propose an efficient beamforming scheme, which stores the weights of subcarriers into memory without user identification at the receiver of base station and calculates the weights for corresponding user in a subcarrier unit of IFFT input at high speed. Also, we obtain the word-length of main data path and other design parameters by fixed-point simulation analysis. The proposed architecture could reduce the memory size proportional to the maximum number of users per frame, and the processing time of an OFDM symbol at the receiver of base station without the need of additional processing time for calculating the weights at the transmitter.

A Channel Assignment Technique for OFDMA-based Wireless Mesh Network with Different Time Delays (서로 다른 지연 시간을 갖는 OFDMA 기반 Wireless Mesh Network에서의 채널 할당 기법)

  • Yoo, Hyun-Il;Park, Chang-Hwan;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6A
    • /
    • pp.568-576
    • /
    • 2011
  • In this paper, a channel assignment technique to mitigate interferences due to ISI(Inter Symbol Interference) and ICI(Inter Carrier Interference) caused by TDoA(Time Difference of Arrival) among distributed MRs(Mesh Routers) in OFDMA(Orthogonal Frequency Division Multiple Access)-based WMN(Wireless Mesh Network) is proposed. The SINR(Signal to Interference and Noise Ratio) associated with the channel assignment for each MR is defined to minimize the effect of ISI and ICI due to TDoA in WMN, which is then used to propose an channel assignment technique considering fairness constraint. It is verified by computer simulation that the proposed channel assignment technique can improve the performance of BER(Bit Error Rate) in WMNs with compared to the conventional technique.

Capacity Optimization of a 802.16e OFDMA/TDD Cellular System using the Joint Allocation Algorithm of Sub-channel and Transmit Power Part I : Sub-channel Allocation Algorithm for Throughput Maximization in the Downlink insuring Fairness and Power Allocation Algorithm for efficient use of Extra Transmit Power efficiently (802.16e OFDMA/TDD 셀룰러 시스템의 성능 최적화를 위한 부채널과 전송전력 결합 할당 알고리즘 Part I : 하향링크에서 공평성이 보장되는 수율 최대화 부채널 할당 알고리즘 및 잉여 전송전력의 효율적인 사용을 위한 전력할당 알고리즘)

  • Ko, Sang-Jun;Chang, Kyung-Hi;Kim, Jae-Hyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3A
    • /
    • pp.247-260
    • /
    • 2007
  • This paper solves the problem of finding a suitable sub-channel and power joint allocation method for multiple users in 802.16e OFDMA/TDD cellular systems. The joint allocation is thatfirstly the sub-channel is allocated to the users and then suitable power is allocated. We propose a FASA (Fairness insured Aggressive Sub-channel Allocation) algorithm which is a dynamic channel allocation algorithm considering all users' channel state information conditionally to maximize fairness and throughput. The improved CHC algorithm, which is dynamic power allocation algorithm, is also proposed in this paper The Improved CHC algorithm collects the extra of the downlink transmit power and then re-allocates it to other users. Simulation results show that the proposed improved CHC algorithm additionally increases the fairness and sector throughput.

A Simple Resource Allocation Scheme for Throughput Enhancement in Relay Based OFDMA Cellular Systems (릴레이 기반의 OFDMA 시스템에서 전송량 증대를 위한 간략화 된 자원 할당 방법)

  • Oh, Eun-Sung;Ju, Hyung-Sik;Han, Seung-Youp;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.9
    • /
    • pp.24-30
    • /
    • 2009
  • This paper presents a simple resource allocation scheme for throughput enhancement in relay based orthogonal frequency division multiple access (OFDMA) cellular systems. The resource allocation schemes, which are based on the optimization problem, have high computational complexity. That is why a searching process is required on the overall allocable resources. Since these schemes should be performed in real time, we propose a simple resource allocation scheme which has very low computational complexity. Firstly, we formulate the optimization problem and draw observations for throughput maximization. Based on observations, we propose a three step allocation scheme that separates the allocable resources into three (i.e. relay, frequency and time). By doing so, the computational complexity can be reduced. Simulation results show that the proposed scheme has near-optimum performance in spite of its low computational complexity.

Packet Scheduling Algorithms for Throughput Fairness and Coverage Enhancement in TDD-OFDMA Downlink Network (TDD-OFDMA 하향 링크에서의 수율 공평성과 서비스 커버리지 보장을 위한 패킷 스케줄링 알고리즘 연구)

  • Ki, Young-Min;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.611-619
    • /
    • 2005
  • The present paper proposes two different packet scheduling algorithms in the IEEE 802.16e type TDD-OFDMA downlink, which are the weighted fair scheduling(WFS) and the throughput guarantee scheduling(TGS). The performance of proposed scheduling algorithms are compared to some of conventional schedulers such as round robin(RR), proportional fair(PF), fast fair throughput(FFTH), and fair throughput(FH) in terms of service coverage, effective throughput and fairness at 64 kbps and 128 kbps minimum user throughput requirements. For a relatively smaller throughput(64 kbps) requirement, the proposed algorithms provide higher improvement in the number of users per sector within 95$\%$ service coverage while satisfying the lxEV-DV fairness criterion. For a relatively larger throughput(128 kbps) requirement, the proposed algorithms provide higher coverage enhancement while maintaining the same effective aggregate throughput over PF scheduler.

Optimization of Fixed-point Design on the Digital Front End in IEEE 802.16e OFDMA-TDD System (IEEE 802.16e OFDMA-TDD 시스템 Digital Front End의 Fixed-point 설계 최적화)

  • Kang Seung-Won;Sun Tae-Hyoung;Chang Kyung-Hi;Lim In-Gi;Eo Ik-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.735-742
    • /
    • 2006
  • In this paper, we explain the operation scheme and fixed-point design method of DFE (Digital Front End), which performs DC offset compensation, automatic frequency control, and automatic gain control over the input signal to the UE (User Equipment) receiver of IEEE 802.16e OFDMA-TDD system. Then, we analyze the performance of DFE under ITU-R M. 1225 Veh-A 60km/h channel environment. To optimize the fixed-point design of DFE, we reduce the number of bit resulted from calculation without performance degradation, leading to the decreased complexity of the operation in H/W, and design the Loop filter with considering trade-off between the Acquisition time and the Stability.

Efficient Adaptive Modulation Technique for Multiuser OFDMA Systems (다중 사용자 OFDMA 시스템에서의 효율적인 적응 변조 및 부호화 기법)

  • Kwon, Jung-Hyoung;Rhee, Do-Ho;Byun, Il-Mu;Whang, Keum-Chan;Kim, Kwang-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1240-1248
    • /
    • 2006
  • In this paper, we present a new method for user selection, sub-band allocation, and power allocation in order to maximize the system throughput under the constraint of transmit power in multiuser downlink orthogonal frequency division multiple access (OFDMA) systems with partial channel quality information (CQI). In previous schemes, each user in one cell transmits CQI of all sub-bands to the base station, which requires enormous feedback overhead. Therefore, we proposed an efficient power allocation and modulation and coding selection scheme in which each user transmits partial CQI and one additional information to reduce the amount of feedback. Simulation results show that we can greatly reduce the amount of feedback than full feedback system.

Frequency Reuse and Sub-cell Coverage Determination Scheme for Improved Throughput in OFDMA-based Relay Systems (OFDMA 기반 Relay 시스템에서 Throughput 개선을 위한 자원 재사용과 커버리지 설정기법)

  • Hyun, Myung-Reun;Choi, Ho-Young;Hong, Dae-Hyoung;Lim, Jae-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.414-420
    • /
    • 2009
  • In this paper, we investigate throughput performance of OFDMA-based relay systems according to the "sub-cell coverage configuration" of the base station (RS) and the relay station (RS). RS is exploited for improved quality of the received signal with a tradeoff of additional radio resource consumption which may result in degradation of the throughput performance of the system. Therefore, "radio resource reuse" may be necessary for high performance in relay systems. However, it also causes system performance degradation since resource reuse between RSs incurs channel interference. Therefore, effective resource reuse also should be considered for "high throughput coverage configuration" when relays are employed. We relate the resource reuse patterns of neighboring RSs to sub-cell coverage configuration. We determine the sub-cell coverage of the system depending on the ratio of received signal-interference-noise-ratio (SINR) of the mobile station (MS) from the BS and RS, respectively. Simulations illustrate the throughput performance as the function of SINR ratio, and it has different optimal point depending on the resource reuse patterns. Therefore, the "resource reuse pattern" and the "effective sub-cell coverage configuration" should be considered together for the high throughput performance of the relay system.

Inter-cell DCA Algorithm for Downlink Wireless Communication Systems (하향링크 무선 통신 시스템에서의 Inter-cell DCA 알고리즘)

  • Kim, Hyo-Su;Kim, Dong-Hoi;Park, Seung-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.693-701
    • /
    • 2008
  • In OFDMA (Orthogonal Frequency Division Multiple Access) system that frequency reuse factor is 1, as the same channels in the neighborhood cells creates inter-cell co-channel interference which provides a resource underutilization problem, channel allocation schemes to minimize inter-cell interference have been studied. This paper proposes a new CNIR (Carrier to Noise and Interference Ratio)-based distributed Inter-cell DCA (Dynamic Channel Allocation) algorithm in the OFDMA environment with frequency reuse factor of 1. When a channel allocation is requested, if there is not a free channel in home cell or the available free channels in home cell do not satisfy a required threshold value, the proposed Inter-cell DCA algorithm finds CNIR values of available free channels in the neighborhood cells and then allocates a free channel with maximum CNIR value. Through the simulation results, we find that the proposed scheme decreases both new call block rate and forced termination rate due to new call generation at the same time because it increases channel allocation probability.

Interference Mitigation Technique for OFDMA-based Mesh Networks in Doubly Selective Channels (시간/주파수 선택적 채널환경에서 OFDMA 기반의 메쉬 네트워크를 위한 간섭 완화 기법)

  • Park, Chang-Hwan;Kong, Mi-Kyung;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.17-24
    • /
    • 2012
  • In this paper, we described a received signal model in terms of the starting point of FFT window and derive a post-detection SINR for the receiver with MMSE filter and the corresponding filter coefficients in order to mitigate the effects of interferences caused by time and frequency selective fading channels and time difference of arrival (TDoA) in OFDMA-based Mesh Networks. In addition, we proposed an MMSE Bidirectional Successive Detection (BSD) technique which can suppress the effects of interferences among multi-nodes without any redundant FFT operations. It was shown by simulation that the proposed interference suppression technique has not an error floor at higher average SNR than 30dB in terms of 64QAM uncoded BER contrary to the conventional techniques.