A Simple Resource Allocation Scheme for Throughput Enhancement in Relay Based OFDMA Cellular Systems

릴레이 기반의 OFDMA 시스템에서 전송량 증대를 위한 간략화 된 자원 할당 방법

  • Oh, Eun-Sung (School of Electrical and Electronic Eng., Yonsei University) ;
  • Ju, Hyung-Sik (School of Electrical and Electronic Eng., Yonsei University) ;
  • Han, Seung-Youp (School of Electrical and Electronic Eng., Yonsei University) ;
  • Hong, Dae-Sik (School of Electrical and Electronic Eng., Yonsei University)
  • 오은성 (연세대학교 전기전자공학부) ;
  • 주형식 (연세대학교 전기전자공학부) ;
  • 한승엽 (연세대학교 전기전자공학부) ;
  • 홍대식 (연세대학교 전기전자공학부)
  • Published : 2009.09.25

Abstract

This paper presents a simple resource allocation scheme for throughput enhancement in relay based orthogonal frequency division multiple access (OFDMA) cellular systems. The resource allocation schemes, which are based on the optimization problem, have high computational complexity. That is why a searching process is required on the overall allocable resources. Since these schemes should be performed in real time, we propose a simple resource allocation scheme which has very low computational complexity. Firstly, we formulate the optimization problem and draw observations for throughput maximization. Based on observations, we propose a three step allocation scheme that separates the allocable resources into three (i.e. relay, frequency and time). By doing so, the computational complexity can be reduced. Simulation results show that the proposed scheme has near-optimum performance in spite of its low computational complexity.

본 논문은 릴레이 시스템을 기반으로 한 직교 분할 다중 반송파 다중 접속 방식(OFDMA, Orthogonal Frequency Division Multiple Access)에서 전송량을 증대를 위한 자원 할당 방법에 관한 것이다. 최적화 문제를 기반으로 하는 자원 할당 방법은 할당 가능한 자원에 대한 검색 과정을 수반하기 때문에 높은 복잡도를 갖는다. 본 논문에서는 복잡도를 줄이기 위하여 세 단계의 자원 할당 방법을 제안한다. 각각의 단계에서 릴레이, 주파수, 시간 자원이 독립적으로 할당되며, 자원을 분리하여 할당함에 따라 복잡도를 줄일 수 있다. 실험 결과를 통하여 제안하는 방법이 복잡도를 줄이면서 최적화 성능에 근접할 수 있음을 보인다.

Keywords

References

  1. A. Sendonaris, E. Erkip, and B. Aazhang, 'User cooperation diversity. Part I. system description,' IEEE Trans. Commun., vol. 51, no. 11, pp. 1927–1938, Nov. 2003 https://doi.org/10.1109/TCOMM.2003.818096
  2. D. Gunduz and E. Erkip, 'Opportunistic cooperation by dynamic resource allocation,' IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 1446–1454, Apr. 2007 https://doi.org/10.1109/TWC.2007.348341
  3. T. C. Y. Ng and W. Yu, 'Joint optimization of relay strategies and resource allocations in cooperative cellular networks,' IEEE J. Select. Areas Commun., vol. 25, no. 2, pp. 328–339, Feb. 2007 https://doi.org/10.1109/JSAC.2007.070209
  4. W. Nam, W. Chang, S. Y. Chung, and Y. H. Lee, 'Transmit optimization for relay-based cellular OFDMA systems,' in Proc. IEEE Int. Conf. Communications, Jun. 2007, pp. 5714–5719
  5. C. Bae and D.-H. Cho, 'Adaptive resource allocation based on channel information in multihop OFDM systems,' in Proc. IEEE Vehicular Technology Conf., Sep. 2006, pp. 1–5
  6. L. Huang, M. Rong, L. Wang, Y. Xue, and E. Schulz, 'Resource allocation for OFDMA based relay enhanced cellular networks,' in Proc. IEEE Vehicular Technology Conf., Apr. 2007, pp. 3160–3164
  7. A.N. Zadeh, B. Jabbari, R. Pickholtz, and B. Vojcic, 'Self-organizing packet radio ad hoc networks with overlay (SOPRANO),' IEEE Commun. Mag., vol. 40, no. 6, pp. 149–157, Jun. 2002 https://doi.org/10.1109/MCOM.2002.1007421
  8. I. Koffman and V. Roman, 'Broadband wireless access solutions based on OFDM access in IEEE 802.16,' IEEE Commun. Mag., vol. 40, no. 4, pp. 96–103, Apr. 2002 https://doi.org/10.1109/35.995857
  9. E. Oh, M.-G. Cho, S. Han, C. Woo, and D. Hong, 'Performance analysis of reuse-partitioning-based subchannelized OFDMA uplink systems,' IEEE Trans. Veh. Technol., vol. 57, no. 3, 2008
  10. J. N. Laneman, D. N. C. Tse, and G. W. Wornell, 'Cooperative diversity in wireless networks: Efficient protocols and outage behavior,' IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004 https://doi.org/10.1109/TIT.2004.838089
  11. T. S. Rappaport, Wireless Communications: Principles and Practice. Upper Saddle River, NJ: Prentice-Hall, 1996
  12. I. Barhumi, G. Leus, and M. Moonen, 'Optimal training design for MIMO OFDM systems in mobile wireless channels,' IEEE Trans. Signal Processing, vol. 51, no. 6, pp. 1615–1624, Jun. 2003 https://doi.org/10.1109/TSP.2003.811243
  13. S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, CB2 2RU, UK: Cambridge University Press, 2004
  14. Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, IEEE 802.16 Std., 2006