• Title/Summary/Keyword: Odor material

검색결과 123건 처리시간 0.029초

Characterization of the Bacterial Community Associated with Methane and Odor in a Pilot-Scale Landfill Biocover under Moderately Thermophilic Conditions

  • Yang, Hyoju;Jung, Hyekyeng;Oh, Kyungcheol;Jeon, Jun-Min;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.803-814
    • /
    • 2021
  • A pilot-scale biocover was constructed at a sanitary landfill and the mitigation of methane and odor compounds was compared between the summer and non-summer seasons. The average inlet methane concentrations were 22.0%, 16.3%, and 31.3%, and the outlet concentrations were 0.1%, 0.1%, and 0.2% during winter, spring, and summer, respectively. The odor removal efficiency was 98.0% during summer, compared to 96.6% and 99.6% during winter and spring, respectively. No deterioration in methane and odor removal performance was observed even when the internal temperature of the biocover increased to more than 40℃ at midday during summer. During summer, the packing material simultaneously degraded methane and dimethyl sulfide (DMS) under both moderately thermophilic (40-50℃) and mesophilic conditions (30℃). Hyphomicrobium and Brevibacillus, which can degrade methane and DMS at 40℃ and 50℃, were isolated. The diversity of the bacterial community in the biocover during summer did not decrease significantly compared to other seasons. The thermophilic environment of the biocover during summer promoted the growth of thermotolerant and thermophilic bacterial populations. In particular, the major methane-oxidizing species were Methylocaldum spp. during summer and Methylobacter spp. during the non-summer seasons. The performance of the biocover remained stable under moderately thermophilic conditions due to the replacement of the main species and the maintenance of bacterial diversity. The information obtained in this study could be used to design biological processes for methane and odor removal during summer and/or in subtropical countries.

대청호 원수내 냄새 및 THM 제거방안 연구 (Removal of Odor and THM from the Raw Water of Daecheong Dam)

  • 전항배;윤기식
    • 한국수자원학회논문집
    • /
    • 제30권3호
    • /
    • pp.235-245
    • /
    • 1997
  • 대청호 원수를 취수하여 정수하는 대청수도에서 이취미를 제거하고 THM(Trihalomethanes) 발생량을 줄이기 위하여 기존 표준정수공정에 오존과 활성탄여과공정을 추가한 pilot plant 실험을 수행하였다. pilot 실험결과 표준정수공정에서 DOC(dissolved organic carbon)는 약 25% 제거되었으나, 오존공정에서는 거의 제거되지 않았고, 30일이 지난 후 GAC(granular activated carbon)에서는 약 75%까지 제거되는 것으로 나타났다. 표준정수공정에서 이취미는 약 30%, 오존산화공정에서 약 60%정도 제거되었고, 활성탄여과에서 대부분 제거되었으나, Column 1과 2에서는 DOC와 같이 이취미물질도 파과(breakthrough) 되는 것으로 나타났다. 전염소처리 대신에 중1, 2염소처리를 도입할 경우 전염소처리와 비교하여 약 25%정도의 THM발생량이 감소하였으며, 후염소처리만할 경우 약 30%까지 감소하는 것으로 나타났다.

  • PDF

건축재료의 향 자극에 대한 뇌파변화 (Change of EEG by Odor Stimulation of Construction Material)

  • 신훈;백건종;송민정;장길수
    • KIEAE Journal
    • /
    • 제9권1호
    • /
    • pp.47-53
    • /
    • 2009
  • To know the effect of smells from eco-friend and existing interior construction materials to human response, EEG of subjects' were measured. EEG signals were measured from 8 electrodes according to the international 10-20 system (Fp1, Fp2, F3, F4, Fc3, Fc4, P3, P4) from 10 healthy subjects in seven odor construction material. Followings are results. When stimuli of smell were suggested, non-stimuli pattern of ${\alpha}$-wave is largely in right occipitallobe part and rare in frontallobe part respectively. In case of eco-friend materials' smell, there is a activation of EEG in right occipitallobe part for every stimuli. But in case of eco-friend paint and Hwang-to, ${\alpha}$-wave is appeared in most part of brain even in frontallobe part. Especially for wet cedar case, activation of brain is very positive in right occipitallobe part and in frontallobe part. When comparing the normalized sensitivity of ${\beta}$-wave which appears in negative response, the preference ratio order is like this. Normal paint ${\rightarrow}$ MDF ${\rightarrow}$ Eco-friend paint ${\rightarrow}$ Gypsum board ${\rightarrow}$ Cedar ${\rightarrow}$ Wet cedar ${\rightarrow}$ Hwang-to.

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • 한국포장학회지
    • /
    • 제27권2호
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.

새우 및 새우젓의 향기성분(香氣成分) (Cooked Odor Components of Sergia Lucens and Its Fermented Product)

  • 최성희
    • 한국식품과학회지
    • /
    • 제19권2호
    • /
    • pp.157-163
    • /
    • 1987
  • 앵(櫻)새우와 이것을 이용(利用)한 새우젓갈에 대해 가열(加熱)에 의한 향기성분(香氣成分)의 변화(變化)를 GC와 GC-MS에 의해 분석(分析), 동정(同定)하였다. 연확증류추출법(連擴蒸溜抽出法)으로 얻은 향기농축물(香氣濃縮物)을 동정(同定)하고 내부표준물질(內部標準物質)을 넣어 정량(定量)을 행하였다. 그 결과(結果) 앵(櫻)새우와 이 젓갈에서 각각(各各) 47종류(種類)외 화합물(化合物)을 동정(同定)하였다. 앵(櫻)새우의 가열향기(加熱香氣) 화합물(化合物)로는 pyrazine류(類)와 thiolane, thialdine등의 함황화합물(含黃化合物)이 대부분을 차지하였다. 또 젓갈 숙성(熟成)에 따라 pyrazine류(類)는 현저하게 증가(增加)하고 발효취(醱酵臭)에 관여한다고 생각되는 alchol류(類)도 다소(多少) 증가(增加)하였다. 합양화합물(合黃化合物)에 있어서는 Sulfide류(類)는 열성(熱成)에 따라 증가(增加)하고 thialdine은 감소(感少)하였다. 또, 앵(櫻)새우의 독특한 가열향기(加熱香氣)에 기여하는 key compound를 찾기 위해 연속증류추출법(連續蒸溜抽出法)에 의해 가열향기농축물(加熱香氣濃縮物)을 얻어 냄새맡기로 개조(改造)된 GC를 이용(利用)하여 관능적(官能的)으로 검토(檢討) 한 결과(結果) 앵(櫻)새우의 가열향기성분(加熱香氣成分) 중(中) 새우냄새 또는 배소(焙燒)의 고소한 냄새를 띄는 것은 2.5-dimethyl pyrazine, 2.6-dimethyl pyrazine 과 2.3-dimethyl pyrazine의 3종류(種類)와 thiolane, thialdine 등의 함황함실(含黃含室) 소화합물(素化合物)이라는 것이 규명(糾明) 되었다.

  • PDF

Improvement of Long-term Stability in $SnO_2$ Based Gas Sensor for Monitoring Offensive Odor

  • Park, Jong-Hun;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • 제6권3호
    • /
    • pp.304-308
    • /
    • 2000
  • WO$_3$/SnO$_2$ceramics has been suggested as an effective sensing material for monitoring offensive odor or pollutant gases. This work was focussed on improving long-term stability, which has been a principal problem generally taking place in SnO$_2$semiconductor gas sensor. Miniaturized thick film gas sensors were fabricated by screen printing technique. Two types of sensor materials, W doped SnO$_2$and WO$_3$mixed SnO$_2$, were comparatively investigated on those long-term stability and sensitivites to several gases. Small amount of W doping(0.1 mol%) into SnO$_2$largely improved the long-term stability. The W(0.1 mol%) doped SnO$_2$gas sensor had higher sensitivities to both acetone and alcohol compared with WO$_3$(5 wt%) mixed SnO$_2$gas sensor. On the contrary, WO$_3$(5 wt%) mixed SnO$_2$gas sensor showed more superior sensitivity to cigarette smoke due to larger W content.

  • PDF

담체변화에 따른 Labscale 바이오필터의 성능 실험 (Operation of Biofilters with Different Packing Material - development of media and biological parameters for optimal odor treatment process in a biofilter)

  • Daechul Cho;Sung Hyun Kwon
    • 한국산학기술학회논문지
    • /
    • 제4권3호
    • /
    • pp.236-241
    • /
    • 2003
  • 산업체 발생 VOC를 효과적으로 처리하는 Biofilter 시스템을 고안하였다. 재질과 다공성이 다른 3기의 시스템으로부터 황화수소, 벤젠, 톨루엔, 크실렌의 단일성분과 복합성분계의 성능을 고찰하였다 저 pH Biofilter(pH 2-3)의 장기운전이 가능하였고 벤젠의 경우 경쟁적 저해를 나타내었으나 일정기간의 순응 이후 혼합처리시 양호한 처리능력을 보여주었다.

  • PDF

축사 악취저감을 위한 바이오필터 충전재의 악취제거 특성 (Characteristics of Bed Media for Reducing Odor from Livestock Facilities)

  • 한원석;장동일;방승훈;이승주
    • 한국축산시설환경학회지
    • /
    • 제9권2호
    • /
    • pp.93-102
    • /
    • 2003
  • 본 연구에서는 충전 재료의 악취흡착 능력을 구명하기 위하여 흡착능력 실험용 칼럼을 설계하고 제작하였으며, 제작되어진 칼럼으로 단일 충전재와 혼합충전재에 대하여 악취흡착 능력 실험을 수행하였다. 그리고 선발된 충전재의 악취제거 미생물균주의 정착성을 구명하기 위한 정착실험을 수행하였으며, 선발된 혼합충전재에 악취제거 미생물균주를 접종하여 악취제거 성능실험을 수행하였다. 그 연구 결과는 다음과 같다. 1. 악취흡착, 제거실험용 실험실용 Biofilter system을 설계, 제작하였으며 충전 칼럼은 설계시의 설정과 같이 내부압력과 기밀성은 문제점이 없는 것으로 나타났다. 2. 단일충전재는 암모니아 180 ppm과 황화수소 20 ppm의 악취가스에 대하여 단위체적당 악취가스 제거량은 각각 왕겨는 0.054 $\ell/\textrm{cm}^3$, 0.016$\ell/\textrm{cm}^3$, 볏짚은 0.01$\ell/\textrm{cm}^3$, 0.04$\ell/\textrm{cm}^3$, 코코넛은 0.158$\ell/\textrm{cm}^3$, 0.010$\ell/\textrm{cm}^3$, 펄라이트는 0.014 $\ell/\textrm{cm}^3$, 0.020$\ell/\textrm{cm}^3$, 하이로드볼은 0.004$\ell/\textrm{cm}^3$, 0.003$\ell/\textrm{cm}^3$, 소나무수피는 0.112$\ell/\textrm{cm}^3$, 0.015 $\ell/\textrm{cm}^3$,로 나타났으며, 혼합충전재는 암모니아 200 ppm과 황화수소 20 ppm의 악취가스에 대하여 단위체적당 악취가스 제거량은 각각 혼합재료 1은 0.045$\ell/\textrm{cm}^3$, 0.014$\ell/\textrm{cm}^3$, 혼합재료 2는 0.079$\ell/\textrm{cm}^3$, 0.016$\ell/\textrm{cm}^3$, 혼합재료 3은 0.123$\ell/\textrm{cm}^3$, 0.017$\ell/\textrm{cm}^3$, 혼합재료 4는 0.031$\ell/\textrm{cm}^3$, 0.015 $\ell/\textrm{cm}^3$, 혼합재료 5는 0.055$\ell/\textrm{cm}^3$, 0.016$\ell/\textrm{cm}^3$, 혼합재료 6은 0.111$\ell/\textrm{cm}^3$, 0.020$\ell/\textrm{cm}^3$,로 나타났다. 3. 단일충전재의 악취흡착 능력은 실험결과 암모니아는 코코넛, 소나무수피, 왕겨에서 흡착 능력이 우수하게 나타났으며, 황화수소는 펄라이트, 왕겨, 소나무수피에서 상대적으로 우수한 것으로 나타났으며, 혼합충전재는 암모니아의 경우 코코넛과 펄라이트의 비율이 7:3인 혼합 재료 3번과 소나무수피와 펄라이트의 비율이 7:3인 혼합 재료 6번에서 다른 혼합 재료에 비하여 우수한 것으로 나타났다. 4. 코코넛과 소나무수피의 경우 암모니아 가스에 대한 흡착 능력은 거의 비슷한 것으로 사료되며, 코코넛의 경우 전량을 수입에 의존하고 있다는 점에서 국내 조달이 용이하며, 구입 비용도 적게 소요되는 소나무수피를 사용하는 것이 경제적이라고 사료된다. 5. 마지막으로 악취제거 미생물균주를 접종한 소나무수피 50%와 펄라이트 30%의 혼합재료를 24시간 동안 장기간 운전 실험을 수행한 결과 암모니아 99.06%, 황화수소 96.61%의 제거 효율을 보였다.

  • PDF

가스센서 어레이와 인공 신경망을 이용한 소형 전자코 시스템의 제작 및 특성 (Fabrication and Characterization of Portable Electronic Nose System using Gas Sensor Array and Artificial Neural Network)

  • 홍형기;권철한;윤동현;김승렬;이규정
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 춘계학술대회 논문집
    • /
    • pp.99-102
    • /
    • 1997
  • An electronic nose system is an instrument designed far mimicking human olfactory system. It consists generally of gas (odor) sensor array corresponding to olfactory receptors of human nose and artificial neural network pattern recognition technique based on human biological odor sensing mechanism. Considerable attempts to develop the electronic nose system have been made far applications in the fields of floods, drinks, cosmetics, environment monitoring, etc. A portable electronic nose system has been fabricated by using oxide semiconductor gas sensor array and pattern recognition technique such as principal component analysis (PCA) and back propagation artificial neural network The sensor array consists of six thick film gas sensors whose sensing layers are Pd-doped WO$_3$ Pt-doped SnO$_2$ TiO$_2$-Sb$_2$O$_3$-Pd-doped SnO$_2$ TiO$_2$-Sb$_2$O$_{5}$-Pd-doped SnO$_2$+Pd filter layer, A1$_2$O$_3$-doped ZnO and PdCl$_2$-doped SnO$_2$. As an application the system has been used to identify CO/HC car exhausting gases and the identification has been successfully demonstrated.d.

  • PDF

Performance of a Biofilter for Odor Removal during Manure Composting

  • Park, K.J.;Hong, J.H.;Choi, M.H.
    • Agricultural and Biosystems Engineering
    • /
    • 제3권2호
    • /
    • pp.59-64
    • /
    • 2002
  • Odor generated during composting of livestock manure is mainly due to ammonia emission. Biofiltration is a desirable method to control composting odor. This study was conducted to analyze the efficiency of using fresh compost as a biofilter. A mixture of cattle manure and recycled compost was composted in a bin equipped with a suction-type blower. The exhaust gas was filtered through the fresh compost. Residence time was controlled by the flow rate of exhaust gas and the depth of filtering materials. At the aeration rate of 30 L/min(experiment I), ammonia reduction rate varied from 100% to -15% for biofilter A(residence time 56.5 s) and almost 100% for biofilter B(residence time 113 s). At the aeration rate of 30 L/min, the cumulative ammonia reduction rate was 80.5% for biofilter A and 99.9% for biofilter B. At the aeration rate of 50 L/min(experiment II), the lowest reduction rate showed a negative value of -350% on the 8th and 9th day for biofilter A(residence time 33.9 5), and 50% on the loth day for biofilter B(residence time 67.8s). At the aeration rate of 50 L/min, the cumulative ammonia reduction rate was 82.5% fur biofilter A and 97.4% for biofilter B. Filtering efficiency was influenced by residence time. The moisture content(MC) and total nitrogen(T-N) of the filtering material were increased by absorbing moisture and ammonia included in the exhaust gas, while pH was decreased and total carbon(T-C) remained unchanged during the filtering operation.

  • PDF