Browse > Article
http://dx.doi.org/10.4014/jmb.2103.03005

Characterization of the Bacterial Community Associated with Methane and Odor in a Pilot-Scale Landfill Biocover under Moderately Thermophilic Conditions  

Yang, Hyoju (Department of Environmental Science and Engineering, Ewha Womans University)
Jung, Hyekyeng (Department of Environmental Science and Engineering, Ewha Womans University)
Oh, Kyungcheol (Green Environmental Complex Center)
Jeon, Jun-Min (Green Environmental Complex Center)
Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.6, 2021 , pp. 803-814 More about this Journal
Abstract
A pilot-scale biocover was constructed at a sanitary landfill and the mitigation of methane and odor compounds was compared between the summer and non-summer seasons. The average inlet methane concentrations were 22.0%, 16.3%, and 31.3%, and the outlet concentrations were 0.1%, 0.1%, and 0.2% during winter, spring, and summer, respectively. The odor removal efficiency was 98.0% during summer, compared to 96.6% and 99.6% during winter and spring, respectively. No deterioration in methane and odor removal performance was observed even when the internal temperature of the biocover increased to more than 40℃ at midday during summer. During summer, the packing material simultaneously degraded methane and dimethyl sulfide (DMS) under both moderately thermophilic (40-50℃) and mesophilic conditions (30℃). Hyphomicrobium and Brevibacillus, which can degrade methane and DMS at 40℃ and 50℃, were isolated. The diversity of the bacterial community in the biocover during summer did not decrease significantly compared to other seasons. The thermophilic environment of the biocover during summer promoted the growth of thermotolerant and thermophilic bacterial populations. In particular, the major methane-oxidizing species were Methylocaldum spp. during summer and Methylobacter spp. during the non-summer seasons. The performance of the biocover remained stable under moderately thermophilic conditions due to the replacement of the main species and the maintenance of bacterial diversity. The information obtained in this study could be used to design biological processes for methane and odor removal during summer and/or in subtropical countries.
Keywords
Methane; odor; thermophile; thermotolerance; bacterial community; biological system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Einola JK, Karhu AE, Rintala JA. 2008. Mechanically-biologically treated municipal solid waste as a support medium for microbial methane oxidation to mitigate landfill greenhouse emissions. Waste Manag. 28: 97-111.   DOI
2 Walker TWN, Kaiser C, Strasser F, Herbold CW, Leblans NIW, Woebken D, et al. 2018. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Chang. 8: 885-889.   DOI
3 Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461.   DOI
4 Gregoire P, Fardeau ML, Joseph M, Guasco S, Hamaide F, Biasutti S, et al. 2011. Isolation and characterization of Thermanaerothrix daxensis gen. nov., sp. nov., a thermophilic anaerobic bacterium pertaining to the phylum "Chloroflexi", isolated from a deep hot aquifer in the Aquitaine Basin. Syst. Appl. Microbiol. 34: 494-497.   DOI
5 Lechevalier MP, Prauser H, Labeda DP, Ruan JS. 1986. Two new genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int. J. Syst. Bacteriol. 36: 29-37.   DOI
6 Allison SD, Martiny JBH. 2008. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 105: 11512-11519.   DOI
7 Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA, 2005. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 7: 301-313.   DOI
8 Borodina E, Kelly DP, Rainey FA, Ward-Rainey NL, Wood AP. 2000. Dimethylsulfone as a growth substrate for novel methylotrophic species of Hyphomicrobium and Arthrobacter. Arch. Microbiol. 173: 425-437.   DOI
9 Hayes AC, Liss SN, Allen DG. 2010. Growth kinetics of Hyphomicrobium and Thiobacillus spp. in mixed cultures degrading dimethyl sulfide and methanol. Appl. Environ. Microbiol. 76: 5423-5431.   DOI
10 Tortosa G, Castellano-Hinojosa A, Correa-Galeote D, Bedmar EJ. 2017. Evolution of bacterial diversity during two-phase olive mill waste ("alperujo") composting by 16S rRNA gene pyrosequencing. Bioresour. Technol. 224: 101-111.   DOI
11 Wijnands LM, Dufrenne JB, Zwietering MH, van Leusden FM. 2006. Spores from mesophilic Bacillus cereus strains germinate better and grow faster in simulated gastro-intestinal conditions than spores from psychrotrophic strains. Int. J. Food Microbiol. 112: 120-128.   DOI
12 Panda MK, Sahu MK, Tayung K. 2013. Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India. Indian J. Microbiol. 5: 159-165.
13 Eshinimaev BT, Medvedkova KA, Khmelenina VN, Suzina NE, Osipov GA, Lysenko AM, et al. 2004. New thermophilic methanotrophs of the genus Methylocaldum. Microbiology 73: 448-456.   DOI
14 Hadad D, Geresh S, Sivan A. 2005. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. Appl. Microbiol. 98: 1093-1100.   DOI
15 Chebbi A, Mhiri N, Rezgui F, Ammar N, Maalej A, Sayadi S, et al. 2015. Biodegradation of malodorous thiols by a Brevibacillus sp. strain isolated from a Tunisian phosphate factory. FEMS Microbiol. Lett. 362: fnv097.   DOI
16 Qi G, Pan Z, Yamamoto Y, Andriamanohiarisoamanana FJ, Yamashiro T, Iwasaki M, et al. 2019. The survival of pathogenic bacteria and plant growth promoting bacteria during mesophilic anaerobic digestion in full-scale biogas plants. Anim. Sci. J. 90: 297-303.   DOI
17 Pearce MM, Hilt EE, Rosenfeld AB, Zilliox MJ, Thomas-White K, Fok C, et al. 2014. The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. mBio 5: e01283-01214.
18 Al-Awadhi N, Mason CA. 1990. The process utility of thermotolerant methylotrophic bacteria: I. an evaluation in chemostat culture. Biotechnol. Bioeng. 36: 816-820.   DOI
19 Lee YY, Hong S, Cho KS. 2019. Design and shelf stability assessment of bacterial agents for simultaneous removal of methane and odors. J. Environ. Sci. Health Part A-Tox. Hazard. Subst. Environ. Eng. 54: 906-913.   DOI
20 Wei Z, Huang Q, Ye Q, Chen Z, Li B, Wang J. 2015. Thermophilic biotrickling filtration of gas-phase trimethylamine. Atmos. Pollut. Res. 6: 428-433.   DOI
21 Singh G, Jain VK, Singh A. 2017. Effect of temperature and other factors on anaerobic digestion process, responsible for bio gas production. J. Theor. Appl. Mech. 12: 637-657.
22 Yun J, Jung H, Ryu HW, Oh KC, Jeon JM, Cho KS. 2018a. Odor mitigation and bacterial community dynamics in on-site biocovers at a sanitary landfill in South Korea. Environ. Res. 166: 516-528.   DOI
23 Yun J, Oh KC, Jeon JM, Ryu HW, Cho KS. 2017. Seasonal emission characteristics of odors and methane from soil cover layers in a sanitary landfill. J. Odor Indoor Environ. 16: 315-328.   DOI
24 Li W, Fu L, Niu B, Wu S, Wooley J. 2012. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief. Bioinform. 13: 656-668.   DOI
25 Park JE, Lee BT, Kim BY, Son A. 2018. Bacterial community analysis of stabilized soils in proximity to an exhausted mine. Environ. Eng. Res. 23: 420-429.   DOI
26 Lozupone C, Hamady M, Knight R. 2006. UniFrac-an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7: 371.   DOI
27 Dravnieks A, Jarke F. 1980. Odor threshold measurement by dynamic olfactometry: Significant operational variables. J. Air Pollut. Contr. Assoc. 30: 1284-1289.   DOI
28 Herlemann DP, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, Andersson AF. 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5: 1571-1579.   DOI
29 Bajar S, Singh A, Kaushik CP, Kaushik A. 2016. Evaluation and statistical optimization of methane oxidation using rice husk amended dumpsite soil as biocover. Waste Manag. 53: 136-143.   DOI
30 Limbri H, Gunawan C, Thomas T, Smith A, Scott J, Rosche B. 2014. Coal-packed methane biofilter for mitigation of green house gas emissions from coal mine ventilation air. PLoS One 9: e94641.   DOI
31 Cho KS, Jung H. 2017. Methane mitigation technology using methanotrophs: A review. Microbiol. Biotechnol. Lett. 45: 185-199.   DOI
32 Karthikeyan OP, Chidambarampadmavathy K, Nadarajan S, Heimann K. 2016. Influence of nutrients on oxidation of low level methane by mixed methanotrophic consortia. Environ. Sci. Pollut. Res. 23: 4346-4357.   DOI
33 Ahoughalandari B, Cabral AR. 2017a. Influence of capillary barrier effect on biogas distribution at the base of passive methane oxidation biosystems: Parametric study. Waste Manag. 63: 172-187.   DOI
34 Ahoughalandari B, Cabral AR. 2017b. Landfill gas distribution at the base of passive methane oxidation biosystems: Transient state analysis of several configurations. Waste Manag. 69: 298-314.   DOI
35 Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, et al. 2009. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag. Res. 27: 409-455.   DOI
36 Nanda S, Sarangi PK, Abraham J, 2012. Microbial biofiltration technology for odour abatement: An introductory review. J. Soil Sci. Environ. Manag. 3: 28-35.
37 Yamada T, Imachi H, Ohashi A, Harada H, Hanada S, Kamagata Y, et al. 2007. Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int. J. Syst. Evol. Microbiol. 57: 2299-2306.   DOI
38 Nunoura T, Hirai M, Miyazaki M, Kazama H, Makita H, Hirayama H, et al. 2013. Isolation and characterization of a thermophilic, obligately anaerobic and heterotrophic marine Chloroflexi bacterium from a Chloroflexi-dominated microbial community associated with a Japanese shallow hydrothermal system, and proposal for Thermomarinilinea lacunofontalis gen. nov., sp. nov. Microbes Environ. 28: 228-235.   DOI
39 De Bo I, Heyman J, Vincke J, Verstraete W, Van Langen-hove H. 2003. Dimethyl sulfide removal from synthetic waste gas using a flat poly(dimethylsiloxane)-coated composite mem-brane bioreactor. Environ. Sci. Technol. 37: 4228-4234.   DOI
40 Yun J, Jung H, Choi H, Oh KC, Jeon JM, Ryu HW, et al. 2018b. Performance evaluation of an on-site biocomplex textile as an alternative daily cover in a sanitary landfill, South Korea. Waste Manag. Res. 36: 1137-1145.   DOI
41 Fang Y, Jia X, Chen L, Lin C, Zhang H, Chen J. 2019. Effect of thermotolerant bacterial inoculation on the microbial community during sludge composting. Can. J. Microbiol. 65: 750-761.   DOI
42 Brooke AG, Watling EM, Attwood MM, Tempest DW. 1989. Environmental control of metabolic fluxes in thermotolerant methylotrophic Bacillus strains. Arch. Microbiol. 151: 268-273.   DOI
43 Bodrossy L, Holmes EM, Holmes AJ, Kovacs KL, Murrell JC. 1997. Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov. Arch. Microbiol. 168: 493-503.   DOI
44 Fang JJ, Yang N, Cen DY, Shao LM, He PJ. 2012. Odor compounds from different sources of landfill: characterization and source identification. Waste Manage 32: 1401-1410.   DOI
45 Allen G. 2016. Rebalancing the global methane budget. Nature 538: 46-48.   DOI
46 Cho KS, Ryu HW. 2009. Biotechnology for the mitigation of methane emission from landfills. Microbiol. Biotechnol. Lett. 37: 293-305.
47 Duan Z, Lu W, Li D, Wang H. 2014. Temporal variation of trace compound emission on the working surface of a landfill in Beijing, China. Atmos.Environ. 88: 230-238.   DOI
48 Capelli L, Sironi S, Del Rosso R, Centola P, Rossi A, Austeri C. 2011. Olfactometric approach for the evaluation of citizens' exposure to industrial emissions in the city of Terni, Italy. Sci. Total. Environ. 409: 595-603.   DOI
49 Hayes JE, Stevenson RJ, Stuetz RM. 2014. The impact of malodour on communities: a review of assessment techniques. Sci. Total Environ. 500-501: 395-407.   DOI
50 Palmiotto M, Fattore E, Paiano V, Celeste G, Colombo A, Davoli E. 2014. Influence of a municipal solid waste landfill in the surrounding environment: toxicological risk and odor nuisance effects. Environ. Int. 68: 16-24.   DOI
51 Wu C, Liu J, Yan L, Chen H, Shao H, Meng T. 2015. Assessment of odor activity value coefficient and odor contribution based on binary interaction effects in waste disposal plant. Atmos. Environ. 103: 231-237.   DOI
52 Lee YY, Jung H, Ryu HW, Oh KC, Jeon JM, Cho KS. 2018. Seasonal characteristics of odor and methane mitigation and the bacterial community dynamics in an on-site biocover at a sanitary landfill. Waste Manag. 71: 277-286.   DOI
53 Jung H, Oh KC, Ryu HW, Jeon JM, Cho KS. 2019. Simultaneous mitigation of methane and odors in a biowindow using a pipe network. Waste Manag. 100: 45-56.   DOI
54 Pecorini I, Rossi E, Iannelli R. 2020. Mitigation of methane, NMVOCs and odor emissions in active and passive biofiltration systems at municipal solid waste landfills. Sustainability 12: 3203.   DOI
55 Afzal I, Iqrar I, Shinwari ZK, Yasmin A. 2016. Plant growth-promoting potential of endophytic bacteria isolated from roots of wild Dodonaea viscosa L. Plant Growth Regul. 81: 399-408.   DOI
56 Bjornsdottir SH, Blondal T, Hreggvidsson GO, Eggertsson G, Petursdottir S, Hjorleifsdottir S, et al. 2006. Rhodothermus marinus: physiology and molecular biology. Extremophiles 10: 1-16.   DOI
57 Zhang Y, Zhang H, Jia B, Wang W, Zhu W, Huang T, et al. 2012. Landfill CH4 oxidation by mineralized refuse: effects of NH4+-N incubation, water content and temperature. Sci. Total. Environ. 426: 406-413.   DOI
58 Ahoughalandari B, Cabral AR. Leroueil S. 2018. Elements of design of passive methane oxidation biosystems: Fundamental and practical considerations about compaction and hydraulic characteristics on biogas migration. Geotech. Geol. Eng. 36: 2593-2609.   DOI
59 Mohamed EF, Awad G, Andriantsiferana C, El-Diwany AI. 2016. Biofiltration technology for the removal of toluene from polluted air using Streptomyces griseus. Environ. Technol. 37: 1197-1207.   DOI
60 Szabo I, Benedek A, Szabo IM, Barabas G. 2000. Feather degradation with a thermotolerant Streptomyces graminofaciens strain. World J. Microbiol. Biotechnol. 16: 253-255.   DOI
61 de Boer L, Dijkhuizen L, Grobben G, Goodfellow M, Stackebrandt E, Parlett JH, Whitehead D, Witt D. 1990. Amycolatopsis methanolica sp. nov., a facultatively methylotrophic actinomycete. Int. J. Syst. Bacteriol. 40: 194-204.   DOI
62 Chen ZY, Wu WX, Min H, Chen MC, Zhao YH. 2000. Isolation and identification of two methane-utilizing strains of Streptomyces hygroscopicus. J. Zhejiang Univ. (Agriculture and Life Sciences) 26: 384-388.
63 Jung HM, Lee JS, Bae HM, Yi TH, Kim SY, Lee ST, et al. 2011. Inquilinus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 61: 201-204.   DOI
64 Kim MK, Jung HY. 2007. Chitinophaga terrae sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 57: 1721-1724.   DOI
65 Podosokorskaya OA, Bonch-Osmolovskaya EA, Novikov AA, Kolganova TV, Kublanov IV. 2013. Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae. Int. J. Syst. Evol. Microbiol. 63: 86-92.   DOI
66 Intergovernmental Panel on Climate Change. 2014. Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland. Available at: https://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf Accessed 27 February, 2021).