• Title/Summary/Keyword: Odd Network

Search Result 34, Processing Time 0.028 seconds

Development of Fault Detection Algorithm on distribution lines using neural network & fuzzy logic (신경 회로망-퍼지로직을 이용한 배전선로 사고 검출 기법의 개발)

  • Choi, J.H.;Jang, S.I.;Eom, J.P.;Park, J.S.;Kim, K.H.;Kim, N.H.;Kang, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1440-1443
    • /
    • 1999
  • This paper proposes fault detection method using a neural network & fuzzy logic on distribution lines. Fault on distribution lines is simulated using EMTP. The pattern of high impedance fault on pebbles, ground and short-circuit fault were take as the learning model. In this paper proposed fault detection method is evaluated on various conditions. The average values after analyzing fault current by FFT of even odd harmonics and fundamental rms were used for the neural network input. Test results were verified the validity of the proposed method

  • PDF

Symmetry and Embedding Algorithm of Interconnection Networks Folded Hyper-Star FHS(2n,n) (상호연결망 폴디드 하이퍼-스타 FHS(2n,n)의 대칭성과 임베딩 알고리즘)

  • Kim, Jong-Seok;Lee, Hyeong-Ok;Kim, Sung-Won
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.501-508
    • /
    • 2009
  • In this paper, we prove that folded hyper-star network FHS(2n,n) is node-symmetric and a bipartite network. We show that FHS(2n,n) can be embedded into odd network On+1 with dilation 2, congestion 1 and Od can be embedded into FHS(2n,n) with dilation 2 and congestion 1. Also, we show that $2n{\time}n$ torus can be embedded into FHS(2n,n) with dilation 2 and congestion 2.

Fault-hamiltonicity of Bipartite Double Loop Networks (이분 그래프인 이중 루프 네트워크의 고장 해밀톤 성질)

  • 박정흠
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.19-26
    • /
    • 2004
  • In this paper, we investigate the longest fault-free paths joining every pair of vertices in a double loop network with faulty vertices and/or edges, and show that a bipartite double loop network G(mn;1, m) is strongly hamiltonian-laceable when the number of faulty elements is two or less. G(mn;1, m) is bipartite if and only if m is odd and n is even.

Design of a Continuous-Time Filter Using the Modified Chebyshev Function and DDA (개선된 Chebyshev 함수와 DDA를 이용한 연속시간 필터 설계)

  • 최석우;윤창훈;김동용
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1572-1580
    • /
    • 1995
  • In this paper, a modified Chebyshev low-pass filter function is proposed. The modified Chebyshev filter function exhibits ripples diminishing toward .omega. = 0 in the passband. So, the modified filter function is realizable in the passive doubly-terminated ladder network for the order n even or odd, thus lending itself amenable to active RC or switched capacitor filters through the simulation techniques. Besides the passive doubly-terminated ladder realizability, lower pole-Q values of the modified function are accountable for improved phase and delay characteristics, as compared to classical function. We have designed the 6th order passive doubly-terminated network using the modified function. And then a continuous-time DDA(Differential Difference Amplifier) filter, which has no matching requirement, is realized by leap-frog simulation technique for fabrication. In the HSPICE simulation results, we confirmed that the designed continuous-time DDA filter characteristics are agreement with the passive filter.

  • PDF

Development of a high Impedance Fault Detection Method in Distribution Lines using Neural network (신경회로망을 이용한 배전선로 고저항 사고 검출 기법의 개발)

  • 황의천;김남호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.80-87
    • /
    • 1999
  • This paper proposed a high impedance fault detection method using a neural network on distribution lines. The $\upsilon-i$ characteristic curve was obtained by high impedance fault data tested in various soil conditions. High impedance fault was simulated using EMTP. The pattern of High Impedance Fault on high density pebbles was taken as the learning model, and the neural network was evaluated on various soil conditions. The average values after analyzing fault current by FFT of even.odd harmonics and fundamental rms were used for the neural network input. Test results were verified the validity of the proposed method .ethod .

  • PDF

Node Disjoint Parallel Paths of Even Network (이븐 연결망의 노드 중복 없는 병렬 경로)

  • Kim, Jong-Seok;Lee, Hyeong-Ok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.9_10
    • /
    • pp.421-428
    • /
    • 2008
  • A. Ghafoor proposed Even networks as a class of fault-tolerant multiprocessor networks in [1] and analyzed so many useful properties include node disjoint paths. By introducing node disjoint paths in [1], fault diameter of Even networks is d+2(d=odd) and d+3(d=even). But the lengths of node disjoint paths proved in [1] are not the shortest. In this paper, we show that Even network Ed is node symmetric. We also propose the shortest lengths of node disjoint paths using cyclic permutation, and fault diameter of Even networks is d+1.

Extraction of Electrical Parameters for Single and Differential Vias on PCB (PCB상 Single 및 Differential Via의 전기적 파라미터 추출)

  • Chae Ji Eun;Lee Hyun Bae;Park Hon June
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.4 s.334
    • /
    • pp.45-52
    • /
    • 2005
  • This paper presents the characterization of through hole vias on printed circuit board (PCB) through the time domain and frequency domain measurements. The time domain measurement was performed on a single via using the TDR, and the model parameters were extracted by the fitting simulation using HSPICE. The frequency domain measurement was also performed by using 2 port VNA, and the model parameters were extracted by fitting simulation with ADS. Using the ABCD matrices, the do-embedding equations were derived probing in the same plane in the VNA measurement. Based on the single via characterization, the differential via characterization was also performed by using TDR measurements. The time domain measurements were performed by using the odd mode and even mode sources in TDR module, and the Parameter values were extracted by fitting with HSPICE. Comparing measurements with simulations, the maximum calculated differences were $14\%$ for single vias and $17\%$ for differential vias.

Design and Fabrication of a Dual-Band Bandpass Filter Using a Dual-Mode Ring Resonator with Two Short-Circuited Stubs for WLAN Application (두 단락 스터브를 갖는 이중 모드 링 공진기를 이용한 WLAN용 이중대역 대역통과 여파기의 설계 및 제작)

  • Choi, Byung-Chang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.9
    • /
    • pp.814-820
    • /
    • 2015
  • In this paper, A high selective dual-band bandpass filter was proposed using a dual-mode ring resonator with two short-circuited stubs. For dual-mode resonance, the ring resonator is directly connected with non-orthogonal feed-lines via coupling capacitors. Two short-circuited stubs which are unequal lengths are simultaneously placed at two corners along the two symmetry plane of the ring resonator in order to obtain dual-band responses. Because the feeding angle perturbated ring resonator of the proposed dual-band bandpass filter has the symmetrical structure, Even/Odd mode analysis can be well applied to extract the scattering parameters and transmission zero frequencies. The proposed dual-band bandpass filter was designed and fabricated for WLAN(Wireless Local Area Network) application of IEEE 802.11n standard. The measured results showed a good agreement with the simulation results, and it should be well applied not only for WLAN applications but also for any other communication systems.

A Methodology on System Implementation for Road Monitoring and Management Based on Automated Driving Hazard Levels (위험도 기반 도로 모니터링 및 관리 시스템 구축 방안)

  • Kyuok Kim;Sang Soo Lee;SunA Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.299-310
    • /
    • 2022
  • The ability of an automated driving system is based on vehicle sensors, judgment and control algorithms, etc. The safety of automated driving system is highly related to the operational status of the road network and compliant road infrastructure. The safe operation of automated driving necessitates continuous monitoring to determine if the road and traffic conditions are suitable and safe. This paper presents a node and link system to build a road monitoring system by considering the ODD(Operational Design Domain) characteristics. Considering scalability, the design is based on the existing ITS standard node-link system, and a method for expressing the monitoring target as a node and a link is presented. We further present a technique to classify and manage hazard risk into five levels, and a method to utilize node and link information when searching for and controlling the optimal route. Furthermore, we introduce an example of system implementation based on the proposed node and link system for Sejong City.

Strongly Hamiltonian Laceability of Mesh Networks (메쉬 연결망의 강한 해밀톤 laceability)

  • Park Kyoung-Wook;Lim Hyeong-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.8
    • /
    • pp.393-398
    • /
    • 2005
  • In interconnection networks, a Hamiltonian path has been utilized in many applications such as the implementation of linear array and multicasting. In this paper, we consider the Hamiltonian properties of mesh networks which are used as the topology of parallel machines. If a network is strongly Hamiltonian laceable, the network has the longest path joining arbitrary two nodes. We show that a two-dimensional mesh M(m, n) is strongly Hamiltonian laceabie, if $m{\geq}4,\;n{\geq}4(m{\geq}3,\;n{\geq}3\;respectively)$, and the number of nodes is even(odd respectively). A mesh is a spanning subgraph of many interconnection networks such as tori, hypercubes, k-ary n-cubes, and recursive circulants. Thus, our result can be applied to discover the fault-hamiltonicity of such networks.