• Title/Summary/Keyword: Octane number

Search Result 67, Processing Time 0.026 seconds

Study on Emission Characteristics Depending on Mixing Fuels of Bio-Alcohol (바이오알코올 혼합연료에 따른 배출 특성 연구)

  • KIM, SHIN;KIM, JAE-KON;LEE, MIN-HO;HWANG, IN-HA;LEE, JUNG-MIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.654-660
    • /
    • 2018
  • The dependence on global fossil fuels has been gradually reducing all over the world. Some countries which recognized the important of environmental values were joining to carry out international GHG goals. Our country has also participated with high targets (37% reduction compared to BAU 2030 years). So we need to supply materials of lower GHG value such as a bio-diesel. Bio-alcohol is one of the similar bio-fuels that can be reducing GHG. A lot of countries had tried to commercialize through various R&D for bio-alcohol. In this study, we analyzed the fuel characteristics of bio-alcohol fuel produced by domestic technology. And we evaluated a possibility to use as vehicle fuel through mixing of bio-alcohol and gasoline. The mixed fuels were satisfied with 2.3 wt% of oxygen content that is standard of the petroleum and petroleum alternative fuel business Act. We tried to evaluate a emission characteristic of vehicle by mixed fuel. In accordance with the results we tried to find a correlation between fuel and emission.

Advances of Isomerizing-hydrogenating Properties of CoMo Catalysts Supported on ASA-Al2O3

  • Avdeenko, E.A.;Nadeina, K.A.;Larina, T.V.;Pakharukova, V.P.;Gerasimov, E.Yu.;Prosvirin, I.P.;Gabrienko, A.A.;Vatutina, Yu.V.;Klimov, O.V.;Noskov, A.S.
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.5
    • /
    • pp.349-361
    • /
    • 2022
  • Because hydrotreating (HDT) of FCC gasoline is one of the important processes used to prepare such gasoline for blending, the development of a catalyst for this process is of great interest. Currently, the industrial HDT of FCC gasoline consists of two stages and the creation of a new catalyst for one-stage HDT will make this process more efficient. Recently, our group has developed the CoMo/Al2O3-ASA catalyst and studied the influence of Si/Al ratio on the target reactions of HDT process. Despite the high selectivity and activity, the catalyst with ASA is not applicable in industry because of its low strength. The present work moves forward to study the influence of the ASA content in the catalyst support and clarify the possibility to develop the catalyst that combines high activity and selectivity in HDT reactions with successful performance. Here we show that the CoMo catalyst with ASA/Al2O3 molar ratio 1/1 in the support is the best combination for FCC gasoline hydrotreatment due to exceptional properties of the catalyst composition.

An experimental Study of the Effect of MTBE contents on Exhaust Emissions and Fuel Economy of MPI and GDi Vehicles (MTBE 함량 변화가 MPI 및 GDi 차량의 배출가스 및 연비에 미치는 영향에 대한 실험적 연구)

  • Song, Hoyoung;Lee, Minho;Kim, Kiho;Lim, Taeyoon;Kim, Hongjip
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.159-169
    • /
    • 2016
  • In this study, the effects of MTBE contents as oxygenates in gasoline on exhaust emissions and fuel economy in MPI and GDi vehicles have been investigated. Various oxygen contents have been selected such as 0, 1.0, 2.3 and 2.7 wt%. FTP-75 and HWFET modes as fuel economy test methods which are widely used in Republic of Korea and US were applied to investigate exhaust emissions from the test vehicles. Emissions of CO, NMHC and NOx did not show significant correlation with oxygen contents in gasoline fuels, although having slight difference with these contents. In addition, CO2 emissions were not significantly changed with respect to oxygen content. But in case of warm-up and FTP-75 and HWFET modes including high speed regimes, CO2 emissions showed inverse correlation with oxygen contents. Particulate number concentration was inversely proportional to the oxygen contents, having the minimum value at the condition of 2.3 wt%. In case of fuel economy through carbon balance method, the highest value has been obtained at 2.3 wt% and there was positive correlation with oxygen contents and fuel economy.

Characteristics of Particle Number and Exhaust emission by Alteration of MTBE Contents in Gasoline (휘발유의 MTBE 함량 변화에 따른 입자개수 및 배출가스 특성)

  • Lim, Taeyoon;Song, Hoyoung;Park, Cheonkyu;Hwang, Inha;Ha, Jonghan;Na, Byungki
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.42-47
    • /
    • 2015
  • While the oxygen content of gasoline for automobiles in Korea is regulated to less than 2.3 weight %, European and World-Wide Fuel Charter (WWFC) regulate it to less than 2.7 weight %. The oxygen content of oxygen-containing materials increases the octane number of the fuel due to the secondary combustion in the internal combustion engine. It has been reported to be effective in reducing emissions, such as CO, HC, which is caused by incomplete combustion. Before 2000s in the United States and Europe, there has been many researches about vehicle application of the changes in oxygen content of gasoline. However, there are not many domestic researches which reflect the improvement of the fuel quality and automotive technology. In this study, fuels of three different oxygen contents were applied to GDI and MPI engines. As a result, the changes of fuel consumption and emission gas were very similar depends of the oxygen content changes. The PN in GDI engine was decreased as the oxygen content was increased.

VISUALIZATION AND MEASUREMENT OF A NARROW-CONE DI GASOLINE SPRAY FOR THE IMPINGEMENT ANALYSIS

  • Park, J.S.;Im, K.S.;Kim, H.S.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.221-238
    • /
    • 2004
  • Wall interactions of direct injection spray were investigated using laser-sheet imaging, shadowgraphy, wetted footprint and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, which has three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall. The surface properties of the impact surface, such as the temperature, the presence of a preexisting liquid film also have a small effect on the amount of wetting or the wetted footprint; however, they have strong influence on what occurs just after impact or after a film is formed. The shadowgraph in particular shows that the plate temperature has a significant effect on vapor phase propagation. Generally, 10-20% faster horizontal vapor phase propagation is observed along the wall at elevated temperature condition. For impingement onto a preexisting film, more splash and evaporation were also observed. Contrary to some preconceptions, there is no significant splashing and droplet rebounding from surfaces that are interposed in the path of the DI gasoline spray, especially for the oblique impact angle cases. There also appears to be a dense spray front consists of large sac spray droplets in the oblique impact angle cases. The bulk of the spray is not impacted on the surface, but rather is deflected by it The microscopic details as depicted by phase Doppler measurements show that the outcome of the droplet impaction events can be significantly influenced. Only droplets at the spray front have high enough Weber numbers for wall impact to wet, splash or rebound. Using the sign of vertical velocity, the time-resolved downward droplets and upward droplets are compared. The Weber number of upward moving droplets, which seldom exceeds unity, also decreases as the impact angle decreases, as the droplets tend to impact less and move along the wall in the deflected spray plume.

Synthesis of TAME, ETBE, and MTBE Using Heteropolyacid Catalyst (헤테로폴리산 촉매를 이용한 TAME, ETBE 및 MTBE 합성반응의 연구)

  • Park, Jin-Hwa;Yi, Yong-Woo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.582-588
    • /
    • 1997
  • Synthetic reaction of TAME, ETBE, and MTBE compounds used largely for gasoline octane number enhancer to prevent air pollution was investigated using heteropolyacid catalyst in a fixed bed flow reactor. In the synthetic reaction of TAME, ETBE and MTBE, after hetero atom being replaced with poly atom, the activity of the catalyst, $H_4SiW_{12}O_{40}$ with coordinated bond with W and an hetero atom of Si was the highest among the catalysts tested. Also the activity depended upon the metals replaced which are related to the catalyst acidity. $FeHPW_{12}O_{40}$ and $K_3PM_{o12}O_{40}$ catalysts showed high activity in TAME synthesis, while they were not effective in ETBE and MTBE synthesis. In this study catalysts showing high activity were selected and mixed with equal weight combination of $H_4SiW_{12}O_{40}$ and $Sr_2SiW_{12}O_{40}$ ;$H_4SiW_{12}O_{40}$ and $NaH_2PW_{12}O_{40}$ ; $Fe_{1.5}PW_{12}O_{40}$ and $Mg_2SiW_{12}O_{40}$ ; $Mg_2SiW_{12}O_{40}$ and $Ba_2SiW_{12}O_{40}$. The mixed heteropolyacid catalysts showed higher TBA conversion rate and better selectivity of ETBE and MTBE than the single catalysts.

  • PDF

A study on the characteristics of fuel performance according to the oxygenated additive type for gasoline fuel Part 1. Fuel properties and evaporative emission characteristics (휘발유 연료용 함산소 첨가제 종류에 따른 성능 특성 연구 Part 1. 연료물성 및 증발가스 배출 특성)

  • Lee, Min-Ho;Kim, Jong-Ryeol;Kim, Ki-Ho;Ha, Jong-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.118-128
    • /
    • 2016
  • As the interest on the air-pollution is gradually rising up at home and abroad, automotive and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward two main issues : exhaust emission and PM (particulate matter) particle emissions of gasoline vehicle. Exhaust emission and PM particle of automotive had many problem that cause of ambient pollution, health effects. In addition, researcher studied the environment problems of the MTBE contained in the fuel as oxygenate additives. The researchers have many data about the health effects of ingestion of MTBE. However, the data support the conclusion that MTBE is a potential human carcinogen at high doses. Based on the oxygenated fuel additive types (MTBE, Bio-ETBE, Bio-ethanol, Bio-butanol), this paper discussed the influence of oxygen contents on gasoline fuel properties and evaporative emission characteristics. Also, this paper assessed the acceleration and power performance of gasoline vehicle for the fuel property.