• Title/Summary/Keyword: Octahedral structure

Search Result 222, Processing Time 0.023 seconds

Chemical Bonding Nature and Mesoporous Structure of Nickel Intercalated Montmorillonite Clay

  • Park, Hye-Mi;Kim, Tae-Woo;Hwang, Seong-Ju;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1323-1328
    • /
    • 2006
  • Mesoporous nickel intercalated aluminosilicate nanohybrid has been synthesized through a recombination reaction between the colloidal suspension of exfoliated montmorillonite nanosheets and aqueous nickel acetate solution. According to powder X-ray diffraction and field emission-scanning electron microscopic analyses, the intercalation of nickel species expands significantly the basal spacing of the host montmorillonite clay and the crystallites of the intercalation compound are assembled to form a house-of-card structure. $N_2$ adsorption-desorption isotherm measurements with BJH pore analyses clearly demonstrated that the porosity of the intercalate originates mainly from mesopores (diameter $\sim50\;\AA$) formed by the house-of-card type stacking of clay crystallites. From FT-IR and X-ray absorption spectroscopic analyses, it becomes certain that intercalated nickel ion is stabilized in an isolated $NiO_6$ octahedral unit. The present mesoporous intercalation compound is expected to be applicable as efficient catalysts or absorbents.

Self-Assembled and Alternative Porphyrin-Phthalocyanine Array

  • Kwag, Gwang-Hoon;Park, Eun-Joo;Kim, Sung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.298-300
    • /
    • 2004
  • An alternative molecular porphyrin-phthalocyanine aggregate was prepared and characterized with UV-visible and X-ray absorption spectroscopies. UV-visible experiments evidence 1-dimensional porphyrin-phthalo-cyanine array formed by mixing $SnTPPCl_2 ({\lambda}_{max}=429,\;{\varepsilon}=2.4{\times10^ 5 /M{\cdot}cm)\;and\;NiPc(OBu)_8({\lambda}_{max}=744 nm,\;{\varepsilon}= 2.0{\times}10^ 5 /M{\cdot}cm)$ in solution. In the UV-visible spectrum of the porphyrin-phthalocyanine array, $(SnPNiPc)_n$, a new Q-band appeared at 844 nm with decrease of the Q-band peak of $NiPc(OBu)_8$ at 744 nm. The red-shift of Q-band evidences an alternative porphyrin-phthalocyanine array formed in solution through metal-halide interaction rather than ${\pi}-{\pi}$ facial interaction, in which nickel of $NiPc(OBu)_8$ coordinates with chloride of $SnTPPCl_2$ through self assembly. Ni K-edge XANES (X-ray absorption near edge structure) spectra also support the axial ligation of nickel to chloride. The square planar structure of $NiPc(OBu)_8$ turns to an octahedral structure in (SnPNiPcSnP) by axial ligation. A higher energy-shift (0.2 eV) of the preedge peak of (SnPNiPcSnP) indicaties partial oxidation of nickel by charge transfer from NiPc$(OBu)_8$ to SnTPPCl$_2$.

A Study on the Comparing the Structure of Bulks with Thin Films of Amorphous Ta-IPA using XRD (X-선 회절을 이용한 비정질 Ta-IPA 괴상과 박막의 구조 비교에 관한 연구)

  • Yoon, Dai-Hyun;Kim, Hwa-Min
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.653-658
    • /
    • 1991
  • The structural variation process and relation of water of amorphous Ta-IPA bulk and thin film upon heat-treatment conditions of $25^{\circ}C$ and $340^{\circ}C$ have been studied by using the radial distribution functions$ (RDF_{obs})$ estimated from the X-ray diffraction intensities, TG-DTA and Infrared spectrophotometer. The expected Ta-IPA structure was determined by comparing the $ RDF_{obs}$ with that for $RDF_{calc}$. The structure of specimens prepared by sol-gel method is basically based on the L-$Ta_2O_5$ crystal. Thin film of samples are mainly composed of octahedral Ta$O_6$and have smaller cluster than bulk samples.

  • PDF

Room Temperature Ferromagnetism on Co and Fe Doped Multi-wall Carbon Nano-tube

  • Chae, K.H.;Gautam, S.;Yu, B.Y.;Song, J.H.;Augustine, S.;Kang, J.K.;Asokan, K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.171-171
    • /
    • 2011
  • Co and Fe doped multi-wall carbon nano-tubes (MWCNTs) synthesized by microwave plasma enhanced chemical vapor deposition (PECVD) technique are investigated with synchrotron radiations at Pohang Light Source (PAL) and European Synchrotron Radiation Facility (ESRF). Near edge x-ray absorption spectroscopy (NEXAFS) measurement at C K, Co $L_{3,2}$ and Fe $L_{3,2}$-edges, and x-ray magnetic circular dichroism (XMCD) at Co and Fe $L_{3,2}$-edges have been carried at 7B1 XAS KIST and 2A MS beamline, respectively, to understand the electronic structure and responsible magnetic interactions at room temperature. X-ray absorption spectroscopy (XAS) at C K-edge shows significant p-bonding and Co and Fe L-edges proves the presence of $Co^{2+}$ and $Fe^{2+}$ in octahedral symmetry. Co and Fe doped MWCNTs show good XMCD spectra at 300K. The effect on the magnetism is also studied through swift heavy ion (SHI) radiations and magnetism is found enhanced and change in the electronic structure in Co-CNTs is investigated.

  • PDF

Crystal Structure Refinement and Persistent Luminescence Properties of Lu3Al5-xGaxO12:Ce3+,Cr3+ Phosphors (Lu3Al5-xGaxO12:Ce3+,Cr3+ 형광체의 결정구조 분석 및 잔광성 발광 특성)

  • Kim, Ji-Won;Kim, Yeong-Jin
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.413-420
    • /
    • 2020
  • Lu3Al5-xGaxO12:Ce3+,Cr3+ powders are prepared using a solid-state reaction method. To determine the crystal structure, Rietveld refinement is performed. The results indicate that Ga3+ ions preferentially occupied tetrahedral rather than octahedral sites. The lattice constant linearly increases, obeying Vegard's law, despite the strong preference of Ga3+ for the tetrahedral sites. Increasing x led to a blue-shift of the Ce3+ emission band in the green region and a change in the emission intensity. Persistent luminescence is observed from the powders prepared with x = 2-3, occurring through a trapping and detrapping process between Ce3+ and Cr3+ ions. The longest persistent luminescence is achieved for x = 2; its lifetime is at least 30 min. The findings are explained using crystal structure refinement, crystal field splitting, optical band gap, and electron trapping mechanism.

XMCD and PES study of a compensated-ferrimagnetic half-metal Mn3Ga

  • Seong, Seungho;Lee, Eunsook;Kim, Hee Yeon;Kim, Younghak;Baik, Jaeyoon;Kang, J.S.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1190-1195
    • /
    • 2018
  • By employing soft X-ray magnetic circular dichroism (XMCD), soft X-ray absorption spectroscopy (XAS), and photoemission spectroscopy (PES), we have investigated the electronic structure of the candidate zero-moment half-metallic $Mn_3Ga$. We have studied the ball-milled and annealed $Mn_3Ga$ powder samples that exhibit nearly zero magnetization. Mn 2p XAS revealed that Mn ions in $Mn_3Ga$ are nearly divalent for both of the Mn ions having the locally octahedral symmetry and those having the locally tetrahedral symmetry. The measured Mn 2p XMCD spectrum of $Mn_3Ga$ is very similar to that of ferrimagnetic $MnFe_2O_4$ having divalent Mn ions. The sum-rule analysis of the Mn 2p XMCD spectrum shows that both the spin and orbital magnetic moments of Mn ions in $Mn_3Ga$ are negligibly small, in agreement with the nearly compensated-ferrimagnetic ground state of $Mn_3Ga$. The valence-band PES spectrum of $Mn_3Ga$ agrees well with the calculated density of states, supporting the half-metallic electronic structure of $Mn_3Ga$.

Synthesis and Characterization of New Polyaza Non-macrocyclic and Macrocyclic Nickel(II) Complexes Containing One 1,3-Diazacyclohexane Ring

  • Lee, Yun-Taek;Jang, Bo Woo;Kang, Shin-Geol
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2125-2130
    • /
    • 2013
  • A new nickel(II) complex $[NiL^1]^{2+}$ ($L^1$ = 1-(2-aminoethyl)-3-(N-{2-aminoethyl}aminomethyl-1,3-diazacyclohexane) containing one 1,3-diazacyclohexane ring has been prepared selectively by the metal-template condensation of formaldehyde with N-(2-aminoethyl)-1,3-propanediamine and ethylenediamine at room temperature. The complex reacts with nitroethane and formaldehyde to yield the pentaaza macrocyclic complex $[NiL^2]^{2+}$ ($L^2$ = 8-methyl-8-nitro-1,3,6,10,13-pentaazabicyclo[13.3.1]heptadecane) bearing one C-$NO_2$ pendant arm. The reduction of $[NiL^2]^{2+}$ by using Zn/HCl produces $[NiL^3(H_2O)]^{2+}$ ($L^3$ = 8-amino-8-methyl-1,3,6,10,13-pentaazabicyclo[13.3.1]heptadecane) bearing one coordinated C-$NH_2$ pendant arm that is readily protonated in acid solutions. The hexaaza macrocyclic complex $[NiL^4]^{2+}$ ($L^4$ = 8-phenylmethyl-8-nitro-1,3,6,8,10,13-hexaazabicyclo[13.3.1]heptadecane) bearing one N-$CH_2C_6H_5$ pendant arm has also been prepared by the reaction of $[NiL^1]^{2+}$ with benzylamine and formaldehyde. The nickel(II) complexes of $L^1$, $L^2$, and $L^4$ have square-planar coordination geometry in the solid states and in nitromethane. However, they exist as equilibrium mixtures of the square-planar $[NiL]^{2+}$ (L = $L^1$, $L^2$, or $L^4$) and octahedral $[NiL(S)_2]^{2+}$ species in various coordinating solvents (S); the proportion of the octahedral species $[NiL(S)_2]^{2+}$ is strongly influenced by the ligand structure and the nature of the solvent. Synthesis, spectra, and chemical properties of the nickel(II) complexes of $L^1-L^4$ are described.

Mossbauer Studies of $Cu_{0.95}Ge_{0.95}Fe_{0.1}O_3$ (Mossbauer 분광법에 의한 $Cu_{0.95}Ge_{0.95}Fe_{0.1}O_3$의 연구)

  • 채광표;권우현;이영배
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.1
    • /
    • pp.16-21
    • /
    • 2000
  • Magnetic properties and crystallographic properties of $Cu_{0.95}Ge_{0.95}Fe_{0.1}O_3$ were studied by using x-ray diffraction, superconducting quantum interference device (SQUID) and Mossbauer spectroscopy. Our sample has orthorhombic structure and the lattice constants are a = 4.795 $\AA$, b = 8.472 $\AA$, c = 2.932 $\AA$. The spin-Peierls (SP) transition temperatures of our sample is 13 K. The Mossbauer spectra consisted with two Zeeman sextets and one doublet due to $Fe^{3+}$ions. The Zeeman sextets come from tetrahedral $Fe^{3+}$ions and the doublets come from octahedral $Fe^{3+}$ions. The jump up of magnetic hyperfine field of 2nd Zeeman sextet and the increasing of the values of quadrupole splitting and isomer shift of doublet below SP transition temperature could be interpreted related with the atomic displacements. The N el temperature is 715 K, the Debye temperature are 540 K for octahedral site and 380 K for tetrahedral site, respectively.

  • PDF

Structural Phase Transition, Electronic Structure, and Magnetic Properties of Sol-gel-prepared Inverse-spinel Nickel-ferrites Thin Films

  • Kim, Kwang Joo;Kim, Min Hwan;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.111-115
    • /
    • 2014
  • X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM) were used to investigate the influence of Ni ions on the structural, electronic, and magnetic properties of nickel-ferrites ($Ni_xFe_{3-x}O_4$). Spinel $Ni_xFe_{3-x}O_4$ ($x{\leq}0.96$) samples were prepared as polycrystalline thin films on $Al_2O_3$ (0001) substrates, using a sol-gel method. XRD patterns of the nickel-ferrites indicate that as the Ni composition increases (x > 0.3), a structural phase transition takes place from cubic to tetragonal lattice. The XPS results imply that the Ni ions in $Ni_xFe_{3-x}O_4$ substitute for the octahedral sites of the spinel lattice, mostly with the ionic valence of +2. The minority-spin d-electrons of the $Ni^{2+}$ ions are mainly distributed below the Fermi level ($E_F$), at around 3 eV; while those of the $Fe^{2+}$ ions are distributed closer to $E_F$ (~1 eV below $E_F$). The magnetic hysteresis curves of the $Ni_xFe_{3-x}O_4$ films measured by VSM show that as x increases, the saturation magnetization ($M_s$) linearly decreases. The decreasing trend is primarily attributable to the decrease in net spin magnetic moment, by the $Ni^{2+}$ ($2{\mu}_B$) substitution for octahedral $Fe^{2+}$ ($4{\mu}_B$) site.

Raman Spectra of the Solid-Solution between $Rb_2La_2Ti_3O_10$ and $RbCa_2Nb_3O_10$

  • Kim, Hui Jin;Byeon, Song Ho;Yun, Ho Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.298-302
    • /
    • 2001
  • A site preference of niobium atom in Rb2-xLa2Ti3-xNbxO10 (0.0 $\leq$ x $\leq1.0)$ and RbLa2-xCaxTi2-xNb1+xO10 (0.0 $\leq$ x $\leq2.0)$, which are the solid-solutions between Rb2La2Ti3O10 and RbCa2Nb3O10, has been investigated by Raman spectroscopy. The Raman spectra of Rb2-xLa2Ti3-xNbxO10 (0.0 $\leq$ x $\leq1.0)$ gave an evidence that niobium atoms substituted for titanium atoms preferably occupy the highly distorted outer octahedral sites rather than the central ones in triple-octahedral perovskite layers. In contrast, the Raman spectra of RbLa2-xCaxTi2-xNb1+xO10 (0.0 $\leq$ x $\leq2.0)$ showed no clear information for the cationic arrangement in perovskite slabs. This difference indicated that a site preference of niobium atoms is observed only when the linear Rb-O-Ti linkage can be replaced by much stronger terminal Nb-O bond with double bond character. From comparison with the Raman spectroscopic behavior of CsLa2-xA’xTi2-xNb1+xO10 (A’ = Ca and Ba; 0.0 $\leqx\leq2.0)$, it is also proposed that a local difference in arrangement of interlayer atoms causes a significantly different solid acidity and photocatalytic activity of the layered perovskite oxides, despite their crystallographically similar structures.