Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.8.413

Crystal Structure Refinement and Persistent Luminescence Properties of Lu3Al5-xGaxO12:Ce3+,Cr3+ Phosphors  

Kim, Ji-Won (Department of Advanced Materials Engineering, Kyonggi University)
Kim, Yeong-Jin (Department of Advanced Materials Engineering, Kyonggi University)
Publication Information
Korean Journal of Materials Research / v.30, no.8, 2020 , pp. 413-420 More about this Journal
Abstract
Lu3Al5-xGaxO12:Ce3+,Cr3+ powders are prepared using a solid-state reaction method. To determine the crystal structure, Rietveld refinement is performed. The results indicate that Ga3+ ions preferentially occupied tetrahedral rather than octahedral sites. The lattice constant linearly increases, obeying Vegard's law, despite the strong preference of Ga3+ for the tetrahedral sites. Increasing x led to a blue-shift of the Ce3+ emission band in the green region and a change in the emission intensity. Persistent luminescence is observed from the powders prepared with x = 2-3, occurring through a trapping and detrapping process between Ce3+ and Cr3+ ions. The longest persistent luminescence is achieved for x = 2; its lifetime is at least 30 min. The findings are explained using crystal structure refinement, crystal field splitting, optical band gap, and electron trapping mechanism.
Keywords
$Lu_3Al_5O_{12}$; garnet; persistent luminescence; afterglow; phosphor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Saito, N. Adachi and H. Kondo, Opt. Express, 15, 1621 (2007).   DOI
2 J. Xu, S. Tanabe, A. D. Sontakke and J. Ueda, Appl. Phys. Lett., 107, 081903 (2015).   DOI
3 X. Lin, R. Zhang, X. Tian, Y. Li, B. Du, J. Nie, Z. Li, L. Chen, J. Ren, J. Qiu and Y. Hu, Adv. Opt. Mater., 6, 1701161 (2018).   DOI
4 H. Li, S. Yin, Y. Wang and T. Sato, RSC Adv., 2, 3234 (2012).   DOI
5 H. Sun, L. Pan, X. Piao and Z. Sun, J. Colloid Interface Sci., 416, 81 (2014).   DOI
6 T. Matsuzawa, Y. Aoki, N. Takeuchi and Y. Murayama, J. Electrochem. Soc., 143, 2670 (1996).   DOI
7 M. Zheng, X. Chen, B. Lei, Y. Xiao, R. Liu, H. Zhang, H. Dong, Y. Liu and X. Liu, ECS Solid State Lett., 2, R19 (2013).   DOI
8 H. He, R. Fu, X. Song, R. Li, Z. Pan, X. Zhao, Z. Deng and Y. Cao, J. Electrochem. Soc., 157, J69 (2010).   DOI
9 Y. Li, Y. Y. Li, K. Sharafudeen, G. P. Dong, S. F. Zhou, Z. J. Ma, M. Y. Peng and J. R. Qiu, J. Mater. Chem. C, 2, 2019 (2014).   DOI
10 N. Yu, F. Liu, X. Li and Z. Pan, Appl. Phys. Lett., 95, 231110 (2009).   DOI
11 A. A. Setlur and A. M. Srivastava, Opt. Mater., 29, 1647 (2007).   DOI
12 P. Schlotter, R. Schmidt and J. Schneider, Appl. Phys. A: Mater. Sci. Process., 64, 417 (1997).   DOI
13 S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers, p. 216, Springer, Berlin (1997).
14 W. W. Holloway and M. Kestigian, J. Opt. Soc. Am., 59, 60 (1969).   DOI
15 J. Xu, J. Ueda and S. Tanabe, J. Mater. Chem. C, 4, 4380 (2016).   DOI
16 J. Ueda, K. Kuroishi and S. Tanabe, Appl. Phys. Lett., 104, 101904 (2014).   DOI
17 J. Ueda, P. Dorenbos, A. J. J. Bos, K. Kuroishia and S. Tanabea, J. Mater. Chem. C, 3, 5642 (2015).   DOI
18 J. Xu, J. Ueda, K. Kuroishi and S. Tanabe, Scr. Mater., 102, 47 (2015).   DOI
19 V. Boiko, J. Zeler, M. Markowska, Z. Dai, A. Gerus, P. Bolek, E. Zych and D. Hreniak, J. Rare Earth, 37, 1200 (2019).   DOI
20 J. Ueda, S. Miyano and S. Tanabe, ACS Appl. Mater. Interfaces, 10, 20652 (2018).   DOI
21 L. Yuan, Y. Jin, D. Zhu, Z. Mou, G. Xie and Y. Hu, ACS Sustainable Chem. Eng., 8, 6543 (2020).   DOI
22 V. Laguta, Y. Zorenko, V. Gorbenko, A. Iskaliyeva, Y. Zagorodniy, O. Sidletskiy, P. Bilski, A. Twardak and M. Nikl, J. Phys. Chem. C, 120, 24400 (2016).   DOI
23 Z. Song, Z. Xia and Q. Liu, J. Phys. Chem. C, 122, 3567 (2018).   DOI
24 K. Kamada, T. Endo and K. Tsutumi, Cryst. Growth Des., 11, 4484 (2011).   DOI
25 I. I. Vrubel, R. G. Polozkov, I. A. Shelykh, V. M. Khanin, P. A. Rodnyi and C. R. Ronda, Cryst. Growth Des., 17, 1863 (2017).   DOI
26 W. Ahn and Y. J. Kim, Ceram. Int., 43, S412 (2017).   DOI
27 J. Xu, J. Wang, Y. Gong, X. Ruan, Z. Liu, B. Hu, B. Liu, H. Li, X. Wang and B. Du, J. Eur. Ceram. Soc., 38, 343 (2018).   DOI
28 M. Rathaiah, M. Kucera, P. Prusa, A. Beitlerova and M. Nikl, Opt. Mater., 91, 321 (2019).   DOI
29 J. Kim, C. K. Lee and Y. J. Kim, Opt. Mater., 104, 109944 (2020).   DOI
30 J. Kim and Y. J. Kim, J. Korean Ceram. Soc., 57, 85 (2020).   DOI
31 Y.-N. Xu and W. Y. Ching, Phys. Rev. B, 59, 10530 (1999).   DOI
32 M. Marezio, J. P. Remeika and P. D. Dernier, Acta Crystallogr. B, 24, 1670 (1968).   DOI
33 A. Nakatsuka, A. Yoshiasa and T. Yamanaka, Acta Crystallogr. B, 55, 266 (1999).   DOI
34 R. G. Burns, Geochim. Cosmochim. Acta, 39, 857 (1975).   DOI