• Title/Summary/Keyword: Oceanic climate data

Search Result 79, Processing Time 0.025 seconds

Construction of Super-Resolution Convolutional Neural Network Model for Super-Resolution of Temperature Data (기온 데이터 초해상화를 위한 Super-Resolution Convolutional Neural Network 모델 구축)

  • Kim, Yong-Hoon;Im, Hyo-Hyuk;Ha, Ji-Hun;Park, Kun-Woo;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.7-13
    • /
    • 2020
  • Meteorology and climate are closely related to human life. By using high-resolution weather data, services that are useful for real-life are available, and the need to produce high-resolution weather data is increasing. We propose a method for super-resolution temperature data using SRCNN. To evaluate the super-resolution temperature data, the temperature for a non-observation point is obtained by using the inverse distance weighting method, and the super-resolution temperature data using interpolation is compared with the super-resolution temperature data using SRCNN. We construct an SRCNN model suitable for super-resolution of temperature data and perform super-resolution of temperature data. As a result, the prediction performance of the super-resolution temperature data using SRCNN was about 10.8% higher than that using interpolation.

Physical Oceanographic Characteristics between Hawaii and Chuuk Observed in Summer of 2006 and 2007 (2006년과 2007년 여름에 관측한 Hawaii-Chuuk 사이의 물리특성)

  • Shin, Chang-Woong;Kim, Dong-Guk;Jeon, Dong-Chull;Kim, Eung
    • Ocean and Polar Research
    • /
    • v.33 no.spc3
    • /
    • pp.371-383
    • /
    • 2011
  • To investigate the physical characteristics and variations of oceanic parameters in the tropical central North Pacific, oceanographic surveys were carried out in summer of 2006 and 2007. The survey periods were classified by Oceanic Ni$\tilde{n}$o Index as a weak El Ni$\tilde{n}$o in 2006 and a medium La Ni$\tilde{n}$a in 2007. The survey instruments were used to acquire data on CTD (Conductivity Temperature and Depth), XBT (Expendable Bathythermograph), and TSG (Thermosalinograph). The dominant temporal variation of surface temperature was diurnal. The diurnal variation in 2007, when the La Ni$\tilde{n}$a weather pattern was in place, was stronger than that in 2006. Surface salinity in 2006 was affected by a northwestward branch of North Equatorial Current, which implies that the El Ni$\tilde{n}$o affects surface properties in the North Equatorial Current region. Two salinity minimum layers existed at stations east of Chuuk in both year's observations. The climatological vertical salinity section along $180^{\circ}E$ shows that the two salinity minimum layers exist in $2^{\circ}N{\sim}12^{\circ}N$ region, consistent with our observations. Analysis of isopycnal lines over the salinity section implies that the upper salinity minimum layer is from intrusion of the upper part of North Pacific Intermediate Water into the lower part of South Pacific Subtropical Surface Water and the lower salinity minimum layer is from Antarctic Intermediate Water.

A Study on the Polarization Potential Distrbution of a Steel Disc in the Water by Specific Resistance of Corrosion Circumstances (환경의 비저항을 고려한 수중 원강판의 분극전위분포에 관한 연구)

  • 김귀식
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.105-108
    • /
    • 1981
  • The oceanic effect on the climate of the southern coast of Korea was analysed based on the sea surface temperature and in order to study relationships between the fluctuation of the sea surface temperature and that of climatic elements. Meteolorogical data from 1960 to 1979 were used. In the year when difference between the air and water temperature was maximum, the air temperature in southern coast was higher than normal year. A fluctuation of the sea surface temperature plays an important influence to determine the variation of the air temperature in the coastal area. Humidity of the coastal climate depends upon the oceanic effect in summer, but not in winter. This results may be due to prevailing wind effect. The oceanic effect on the precipitation in the coastal area is not found.

  • PDF

Application of SeaWiFS Chlorophyll-a Ocean Color Image for estimating Sea Surface Currents from Geostationary Ocean Color Imagery (GOCI) data (정지궤도 해색탑재체(GOCI) 표층유속 추정을 위한 SeaWiFS 해색자료의 응용)

  • Kim, Eung;Ro, Young-Jae;Jeon, Dong-Chull
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.209-220
    • /
    • 2010
  • One of the most difficult tasks in measuring oceanic conditions is to produce oceanic current information. In efforts to overcome the difficulties, various attempts have been carried out to estimate the speed and direction of ocean currents by utilizing sequential satellite images. In this study, we have estimated sea surface current vectors to the south of the Korean Peninsula, based on the maximum cross-correlation method by using sequential ocean color images of SeaWiFS chlorophyll-a. Comparison of surface current vectors estimated by this method with the geostrophic current vectors estimated from satellite altimeter data and in-situ ADCP measurements are good in that current speeds are underestimated by about 15% and current directions are show differences of about $36^{\circ}$ compared with previous results. The technique of estimating current vectors based on maximum cross-correlation applied on sequential images of SeaWiFS is promising for the future application of GOCI data for the ocean studies.

Long-term and Real-time Monitoring System of the East/Japan Sea

  • Kim, Kuh;Kim, Yun-Bae;Park, Jong-Jin;Nam, Sung-Hyun;Park, Kyung-Ae;Chang, Kyung-Il
    • Ocean Science Journal
    • /
    • v.40 no.1
    • /
    • pp.25-44
    • /
    • 2005
  • Long-term, continuous, and real-time ocean monitoring has been undertaken in order to evaluate various oceanographic phenomena and processes in the East/Japan Sea. Recent technical advances combined with our concerted efforts have allowed us to establish a real-time monitoring system and to accumulate considerable knowledge on what has been taking place in water properties, current systems, and circulation in the East Sea. We have obtained information on volume transport across the Korea Strait through cable voltage measurements and continuous temperature and salinity profile data from ARGO floats placed throughout entire East Sea since 1997. These ARGO float data have been utilized to estimate deep current, inertial kinetic energy, and changes in water mass, especially in the northern East Sea. We have also developed the East Sea Real-time Ocean Buoy (ESROB) in coastal regions and made continual improvements till it has evolved into the most up-to-date and effective monitoring system as a result of remarkable technical progress in data communication systems. Atmospheric and oceanic measurements by ESROB have contributed to the recognition of coastal wind variability, current fluctuations, and internal waves near and off the eastern coast of Korea. Long-tenn current meter moorings have been in operation since 1996 between Ulleungdo and Dokdo to monitor the interbasin deep water exchanges between the Japanese and Ulleung Basins. In addition, remotely sensed satellite data could facilitate the investigation of atmospheric and oceanic surface conditions such as sea surface temperature (SST), sea surface height, near-surface winds, oceanic color, surface roughness, and so on. These satellite data revealed surface frontal structures with a fairly good spatial resolution, seasonal cycle of SST, atmospheric wind forcing, geostrophic current anomalies, and biogeochemical processes associated with physical forcing and processes. Since the East Sea has been recognized as a natural laboratory for global oceanic changes and a clue to abrupt climate change, we aim at constructing a 4-D continuous real-time monitoring system, over a decade at least, using the most advanced techniques to understand a variety of oceanic processes in the East Sea.

SL/SST variations and their correlations in the North East Asian Sens by remote sensing (Topex/Poseidon, NOAA)

  • Yoon, Hong-Joo
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.297-299
    • /
    • 2003
  • Altimeter(Topex/Poseidon) and AVHRR(NOAA) data were used to study the variations and correlations of Sea Level(SL) and Sea Surface Temperature (SST) in the North East Asian Seas from November 1993 to May 1998. This region is influenced simultaneously to continental and oceanic climate as the border of the East Sea(Japan Sea). SL and SST have increased gradually every year because the global warming, and presented usually a strong annual variations in Kuroshio extension region with the influence of bottom topography.

  • PDF

SL/SST variations and their Correlations in the North East Asian Seas by Remote Sensing

  • Yoon, Hong-Joo
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.58-60
    • /
    • 2003
  • Altimeter(Topex/Poseidon) and AVHRR(NOAA) data were used to study the variations and correlations of Sea Level(SL) and Sea Surface Temperature (SST) in the North East Asian Seas from November 1993 to May 1998. This region is influenced simultaneously to continental and oceanic climate. SL and SST have increased gradually every year because the global warming, and presented usually a strong annual variations in Kuroshio extension region with the influence of bottom topography.

Cruise Report on TAO Real-time Monitoring Buoy System in the Pacific Ocean in April 2010 (2010년 4월 TAO 해양관측부이 시스템에 관한 탐사보고)

  • Kim, Dong-Guk;Kim, Seon-Jeong;Lee, Ha-Woong
    • Ocean and Polar Research
    • /
    • v.33 no.4
    • /
    • pp.507-516
    • /
    • 2011
  • Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON) Array is the series of buoys for the international ocean research project, which is mostly supported by National Ocean and Atmosphere Administration (NOAA) and Japan Agency for Marine-Earth Science and Technology (JAMSTEC). We can determine the effect of the equatorial and Pacific Ocean conditions on global climate change from buoy array measurement data. The TAO/TRITON array comprises around 70 measurement buoys from $10^{\circ}$ north to $10^{\circ}$ south in the tropics and between Galpagos and New Guinea. NOAA maintains ATLAS buoys in the central and eastern Pacific between $165^{\circ}E$ and $95^{\circ}W$, and JAMSTEC maintains the 12 buoys in the western Pacific along $137^{\circ}E$, $147^{\circ}E$, and $156^{\circ}E$. The KA-10-03 cruise excursion provided us with a good opportunity to obtain knowledge on oceanic buoy operation and maintenance. Further, we learned advanced techniques and know-how on buoy operation and maintenance. Once we are confident with our buoy management and maintenance techniques, both KORDI and NOAA technicians may be able to help each other when needed and share available resources.

Relation between the Sea Surface Temperature and the Coastal Climate in Korea (우리나라의 연안기후와 해면수온과의 관계)

  • AHN Yoo-Shin;HAN Young-Ho;KIM Young-Seup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.6
    • /
    • pp.566-574
    • /
    • 1984
  • The oceanic effect on the coastal climate, the air temperature and the humidity, in Korea was studied by using the meteorological and the sea surface temperature data compiled from 1962 to 1981. The fluctuation of sea surface temperature plays an important role in determining the air temperature and the humidity in the coastal area, The sea surface temperature is higher than the air temperature from September to March in the western coastal area, and from September to April in the southern and the eastern coastal areas, It is found that in March the air temperature begins to surpass the sea ourface temperature in the western coastal area, and in April in the southern and the eastern coastal areas. On the basis of the multiple regression analysis it is found that the oceanic effect on the coastal climate, the air temperature and the humidity, in the western coastal area is different that in the southern and the eastern coastal areas.

  • PDF

Precipitation-Streamflow Elasticity analysis of Nakdong River Based on RCP 4.5 Climate Change Scenario (RCP 4.5 기후변화 시나리오 기반의 낙동강 유역의 강우-유출 탄성도 분석)

  • Jang, Young-su;Park, Jae-Rock;Shin, Hyun-suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.605-612
    • /
    • 2017
  • Climate change affects the natural ecosystem and human socioeconomic activities by acting on various constituents such as the atmospheric, oceanic, biological, and land constituents of the climate. Predicting the impacts of ongoing climate change will be an important factor in adapting to the climate of the future. In this study, precipitation-streamflow elasticity analysis of the Nakdong River area was conducted using the RCP 4.5 scenario developed by the IPCC (Intergovernmental Panel on Climate Change). Precipitation and streamflow in the Nakdong River area was analyzed using monthly, seasonal, and yearly data. Results found that the climate would become very humid climate by 2100. Results of this study can be applied to adaptation of climate change, management of water resources and efficient utilization of hydraulic structures.