• Title/Summary/Keyword: Ocean thermal energy conversion

Search Result 60, Processing Time 0.022 seconds

The Primary Research on oil Conversion Technology of biomass by Pyrolysis (열분해에 의한 바이오매스의 유류자원화 기술에 관한 기초 연구)

  • Chio, Hyuk-Jin;Yoo, Sun-Kyoung;Oh, Sang-Woo;Lee, Seung-Guk;Lee, Seung-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.2
    • /
    • pp.112-117
    • /
    • 2007
  • This study aims to develop an alternative energy like oil made from marine organic waste by marine products waste, spent fishing nets. There are already many commercial examples and case studies based on the petroleum industry-refuse plastic or refuse tire, however, it is rare that a research developing alternative energy from food waste and organic waste. Therefore, this study investigated the oil made from thermal decomposition under the high temperature and high pressure condition, and examined the possibility for commercial use by testing its own characteristics. A bio-oil from thermal decomposition at $250^{\circ}C$ and 40 atm was hard to remove impurities because of its high viscosity, showed lower caloric value than heavy oil, and generated various gases which were not appropriate for the use of fuel. It is noticeable that thermal decomposition was occurred at $250{\pm}5^{\circ}C$ using steam pressure, which much lower compared to the existing method of thermal decomposition, more than $500^{\circ}C$. Since the high viscosity of bio-oil, it is necessary a further study to use as liquid fuel.

  • PDF

CFD Performance Analysis and Design of a 8kW Class Radial Inflow Turbine for Ocean Thermal Energy Conversion Using a Working Fluid of Ammonia (암모니아 작동유체를 이용한 해수온도차발전용 8kW급 구심터빈의 설계 및 CFD 성능해석)

  • Mo, Jang-Oh;Cha, Sang-Won;Kim, You-Taek;Lim, Tae-Woo;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1030-1035
    • /
    • 2012
  • In this research, we analysed design and CFD analysis of an inflow radial turbine for OTEC with an output power of 8kW using an working fluid of ammonia. The inflow radial turbine consists of scroll casing, vain nozzle with 18 blade numbers and rotor blade with 13 blade numbers. Mass flow rate, and inlet temperature are 0.5kg/s and $25^{\circ}C$ respectively, and variable rotational speeds were applied between 12,000 and 36,000 with 3,000 rpm intervals. As the results according to the rotational speeds, the designed speed is 24,000 rpm where maximum efficiency exists. The maximum efficiency and output power are 88.66% and 8.52kW, respectively. Through this study, we expect that the analysed results will be used as the design material for the composition of the turbine optimal design parameters corresponding to the target output power under various working material conditions.

Design and Analysis of a Radial Turbine for Ocean Thermal Energy Conversion (해양온도차발전용 반경류 터빈의 설계 및 해석)

  • Nguyen, Van Hap;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.207-214
    • /
    • 2015
  • The preliminary design of a radial inflow turbine using R134a as the working fluid at 5 kW of power for application to ocean thermal energy conversion (OTEC) is performed to obtain the trends for the efficiency and geometrical dimensions of the turbine. Using input conditions that included a turbine inlet temperature of $25^{\circ}C$, an outlet static pressure of 4.9 bar, and a mass flow rate of 1.16 kg/s, the results of a mean flow analysis show the major dimensions of the turbine, along with an angular velocity of 12,820 rpm. Based on these results, a three-dimensional turbine model is constructed for a computational fluid dynamics (CFD) analysis. The flow characteristics inside the turbine, including the volute and nozzle, are investigated using the CFD software ANSYS CFX. For a pertinent number of nozzle guide vanes, ranging from 10 to 15, the turbine efficiency was higher than 80%, with the highest efficiency shown by a nozzle with 15 guide vanes.

Basic Static Characteristics of a Closed and a Regeneration Cycles for the OTEC System (해양온도차발전 Closed and Regeneration Cycle의 기본 정특성)

  • Cha, Sang-Won;Kim, You-Taek;Mo, Jang-Oh;Lim, Tae-Woo;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1151-1157
    • /
    • 2012
  • Ocean Thermal Energy Conversion(OTEC) technology is one of the new and renewable energy that utilizes the natural temperature gradient that exists in the tropical ocean between warm surface water and the deep cold water, to generate electricity. The selection of working fluid and the OTEC cycle greatly influence the effect on the system operation, and it's energy efficiency and impacts on the environment. Working fluids of the OTEC are ammonia, R22, R407C, and R410A. In this paper, we compared boiling pressure to optimize OTEC system at $25^{\circ}C$. Also, this paper showed net-power and efficiency according to working fluids for closed cycle and regeneration cycle.

The development of a preliminary designing program for ORC radial inflow turbines and the design of the radial inflow turbine for the OTEC (ORC 반경류터빈의 예비설계프로그램 개발 및 OTEC용 반경류터빈의 설계)

  • Kim, Do-Yeop;Kang, Ho-Keun;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.276-284
    • /
    • 2014
  • The purpose of this study is to establish the designing method of ORC(Organic Rankine Cycle) radial inflow turbines. RTDM(Radial Turbine Design Modeler) Ver.2.1 which is a preliminary design program of radial inflow turbines was developed to achieve this purpose. The 200kW-class radial inflow turbine for OTEC(Ocean Thermal Energy Conversion) was designed by using the RTDM Ver.2.1 and CFD(Computational Fluid Dynamics) simulation was performed to verify the accuracy of RTDM Ver.2.1. With the result of simulation, the accuracy of RTDM Ver.2.1 was almost 94.6% based on the designed total enthalpy drop of the radial inflow turbine. Strategy of adjusting the mass flow rate was adopted on this study to satisfy the requirements of its power and rotor outlet's conditions for the designed radial inflow turbine. The mass flow rate was consequently increased to 21.2 kg/s for the designed 200kW-class radial inflow turbine for OTEC, and then Total to total and Total to static efficiency are 89.8% and 85.36% respectively.

Performance analysis of 20 kW OTEC power cycle using various working fluids (다양한 작동유체를 이용한 20 kW급 해양온도차 발전 사이클 성능 분석)

  • Yoon, Jung In;Ye, Byung Hyo;Heo, Jung Ho;Kim, Hyun Ju;Lee, Ho Saeng;Son, Chang Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.836-842
    • /
    • 2013
  • In this paper, the 20 kW Ocean Thermal Energy Conversion(OTEC) is newly proposed in order to select the refrigerant that makes the cycle performance be optimized and the performance of 20 kW OTEC applying 15 pure refrigerants and 16 mixed refrigerants is analyzed. The efficiency of system, the mass flow of working fluids and TPP, which is new concepts, are analyzed. In view of cycle efficiency, R32/R152a (87:13) is the highest efficiency among the refrigerants. At the mass flow of working fluid to make the 20 kW electricity, R717 is shown as the lowest value. And in view of TPP in this study, R32/R134a 70:30 is the most optimized refrigerant. The analysis can confirm that the refrigerant is different along with the part of the system, so it is necessary to select the optimized refrigerant for 20 kW OTEC.

Cycle Simulation on OTEC System using the Condenser Effluent from Nuclear Power Plant (원자력발전소 온배수를 이용한 해양 온도차발전 사이클 해석)

  • Kim, Nam-Jin;Jeon, Young-Han;Kim, Chong-Bo
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.37-44
    • /
    • 2007
  • For the past few years, the concern for clean energy has been greatly increased. Ocean Thermal Energy Conversion(OTEC) power plants are studied as a viable option for the supply of clean energy. In this paper, the thermodynamic performance of OTEC cycle was examined. Computer simulation programs were developed under the same condition and various working fluids for closed Rankine cycle, regeneration cycle, Kalina cycle, open cycle and hybrid cycle. The results show that the regeneration cycle using R125 showed a 0.17 to 1.56% increase in energy efficiency, and simple Rankine cycle can generate electricity when the difference in warm and cold sea water inlet temperatures are greater than $15^{\circ}C$. Also, the cycle efficiency of OTEC power plant using the condenser effluent from nuclear power plant instead of the surface water increased about 2%.

A Basic Study on Site Selection of Ocean Thermal Energy Conversion Plant in Adjacent Seas of the Korean Peninsula (I) (한국근해 해양 온도차 발전소의 입지선정에 관한 기초연구 (I))

  • Suh, Young-Sang;Jang, Lee-Hyun;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.1 no.2
    • /
    • pp.44-55
    • /
    • 1998
  • This study was carried out to investigate the feasibility of OTEC(Ocean Thermal Energy Conversion) operation, in the East Sea of Korea. Accumulated cruise data of NFRDI (National Fisheries Research and Development Institute) over the period 1966~1995 were used to locate appropriate spot by season as well as by latitude which would show the difference at least $15^{\circ}C$ or more between the surface layer and each depth of 50, 100, 150, 200, 250, 300, 400 and 500m. Our results showed that the coastal areas of Pohang city met the requirement of more than $20^{\circ}C$ difference for OTEC plant from August to October. In contrast, in case that $15^{\circ}C$ would be possible thermal difference to operate OTEC plant, most coastal areas in the East Sea including Pohang from June to December are potential candidates for this future energy source. Therefore, we present in this paper the first option to locate the best place for OTEC plant operation using Geographical Information System (GIS), which is currently used for multi-dimensional space analysis.

  • PDF

Study on OTEC for the Production of Electric Power and Desalinated Water (전력 및 담수생산을 위한 해양온도차발전에 대한 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.124-130
    • /
    • 2010
  • Ocean Thermal Energy Conversion(OTEC) power plants have been examined as a viable option for supplying clean energy. This paper evaluated the thermodynamic performance of the OTEC Power system for the production of electric power and desalinated water. The results show that newly developed fluids such as R32, R125, R143a, and R410A that do not cause stratospheric ozone layer depletion perform as well as R22 and ammonia. Overall cycle efficiency of open cycle is the lowest value of 3.01% because about 10% of the gross power is used for pumping out non-condensable gas. Also, the hybrid cycle is an attempt to combine the best features and avoid the worst features of the open and closed cycles. The overall cycle efficiency of hybrid cycle is 3.44% and the amount of desalinated water is 0.0619 kg/s.

A Study on Regenerative OTEC System using the Condenser Effluent of Uljin Nuclear Power Plant (울진 원자력발전소 온배수를 이용한 재생식 해양온도차발전에 대한 연구)

  • Kang, Yun-Young;Park, Sung-Seek;Park, Yun-Beom;Kim, Nam-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.7
    • /
    • pp.591-597
    • /
    • 2012
  • For the past few years, the concern for clean energy has been greatly increased. Ocean thermal Energy Conversion(OTEC) power plants are studied as a viable option for the supply of clean energy. In this study, we examined the thermodynamic performance of the OTEC power system for the production of electric power. Computer simulation programs were developed under the same condition and various working fluids for closed Rankine cycle, regenerative cycle, Kalina cycle, open cycle, and hybrid cycle. The results show that the regenerative cycle showed the best system efficiency. And then we examined the thermodynamic performance of regenerative cycle OTEC power system using the condenser effluent from Uljin nuclear power plant instead of the surface water. The highest system efficiency of the condition was 4.55% and the highest net power was 181 MW.