• Title/Summary/Keyword: Ocean renewable energy

Search Result 221, Processing Time 0.026 seconds

Study on Economic Analysis of Offshore and Ground-mounted Solar Photovoltaics (해상과 지상 태양광 발전 경제성 비교에 관한 연구)

  • Kyu-Won Hwang;Moon Suk Lee;Chul-Yong Lee
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.38-51
    • /
    • 2024
  • The rapid expansion of industrialization and population growth worldwide has led to a significant surge in energy demand, perpetuating heavy reliance on finite fossil fuel reserves. Although prevailing policies primarily target ground-mounted solar photovoltaics, there is a noticeable increase in the adoption of floating solar power generation systems on water surfaces. Nonetheless, adequate studies and legislative reviews on offshore solar photovoltaics in Korea are lacking. The absence of well-defined criteria for the economic analysis of floating solar photovoltaics presents hurdles to their economic feasibility. This study conducted a comprehensive cost-benefit analysis of offshore photovoltaics to evaluate their economic viability and compared four types of solar photovoltaics based on the operating area and technology: ground-mounted, floating on inland water, pontoon-based offshore, and flexible system offshore. Perspectives from both central and local government entities, emphasizing social aspects, as well as inputs from private companies with a financial focus were considered. The findings revealed variations in economic viability depending on the operating area and technology employed. This study aims to contribute to the advancement of market maturity and technology within the realm of offshore solar photovoltaics.

HAT Tidal Current Rotor Performance as per various Design Parameter (조류발전 로터 설계변수에 따른 성능 검토)

  • Jo, Chul-Hee;Yim, Jin-Young;Lee, Kang-Hee;Song, Seung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.590-593
    • /
    • 2009
  • Tidal current power system is one of ocean renewable energies that can minimize the environmental impact with many advantages compared to other energy sources. Not like others, the produced energy can be precisely predicted without weather conditions and also the operation rate is very high. To convert the current into power, the first device encountered to the incoming flow is the rotor that can transform into rotational energy. The performance of rotor can be determined by various design parameters including numbers of blade, sectional shape, diameter, and etc. The stream lines near the rotating rotor is very complex and the interference effects around the system is also difficult to predict. This paper introduces the experiment of rotor performance and also the effect of design parameter on the performance of HAT rotor by CFD.

  • PDF

Assessment of Theoretical Annual Energy Production in the Coast of South Korea Using Tidal Current Energy Converters Utilizing Flow Induced Vibration (한국 해안에서 유동유발진동 현상을 이용한 조류에너지 발전기술의 이론적 연간 발전량 산정연구)

  • Kim, Eun Soo;Oh, Kwang Myung;Park, Hongrae
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2019
  • The Korean government is aiming to produce 20% of the electricity using renewable energy sources by 2030. Ocean renewable energy sources which are abundant in South Korea can do an important role to achieve the goal. This paper introduces a tidal current energy converter utilizing flow induced vibrations which can efficiently work even in the currents slower than 1.0m/s and suggests optimal designs of the tidal energy converter based on speeds of the tidal currents in seven different coastal regions in South Korea. Moreover, the theoretical annual energy production by the tidal converter is estimated at theses costal areas. The total amount of the annual energy production by the tidal energy converter is predicted as 221.77 TWh which is equivalent to 42.3% of the electric consumption of South Korea in 2013. The result shows that the tidal current energy converter can be an important role to achieve the goal of the Korean government.

Prediction of Wind Power Generation at Southwest Coast of Korea Considering Uncertainty of HeMOSU-1 Wind Speed Data (HeMOSU-1호 관측풍속의 불확실성을 고려한 서남해안의 풍력 발전량 예측)

  • Lee, Geenam;Kim, Donghyawn;Kwon, Osoon
    • New & Renewable Energy
    • /
    • v.10 no.2
    • /
    • pp.19-28
    • /
    • 2014
  • Wind power generation of 5 MW wind turbine was predicted by using wind measurement data from HeMOSU-1 which is at south west coast of Korea. Time histories of turbulent wind was generated from 10-min mean wind speed and then they were used as input to Bladed to estimated electric power. Those estimated powers are used in both polynominal regression and neural network training. They were compared with each other for daily production and yearly production. Effect of mean wind speed and turbulence intensity were quantitatively analyzed and discussed. This technique further can be used to assess lifetime power of wind turbine.

Optimal Design of Blade Shape for 200-kW-Class Horizontal Axis Tidal Current Turbines (200kW급 수평축 조류발전 터빈 블레이드 형상 최적설계)

  • Seo, JiHye;Yi, Jin-Hak;Park, Jin-Soon;Lee, Kwang-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.366-372
    • /
    • 2015
  • Ocean energy is one of the most promising renewable energy resources. In particular, South Korea is one of the countries where it is economically and technically feasible to develop tidal current power plants to use tidal current energy. In this study, based on the design code for HARP_Opt (Horizontal axis rotor performance optimizer) developed by NREL (National Renewable Energy Laboratory) in the United States, and applying the BEMT (Blade element momentum theory) and GA (Genetic algorithm), the optimal shape design and performance evaluation of the horizontal axis rotor for a 200-kW-class tidal current turbine were performed using different numbers of blades (two or three) and a pitch control method (variable pitch or fixed pitch). As a result, the VSFP (Variable Speed Fixed Pitch) turbine with three blades showed the best performance. However, the performances of four different cases did not show significant differences. Hence, it is necessary when selecting the final design to consider the structural integrity related to the fatigue, along with the economic feasibility of manufacturing the blades.

Preliminary hydrodynamic assessments of a new hybrid wind wave energy conversion concept

  • Allan C de Oliveira
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.21-41
    • /
    • 2023
  • Decarbonization and energy transition can be considered as a main concern even for the oil industry. One of the initiatives to reduce emissions under studies considers the use of renewable energy as a complimentary supply of electric energy of the production platforms. Wind energy has a higher TRL (Technology Readiness Level) than other types of energy converters and has been considered in these studies. However, other types of renewable energy have potential to be used and hybrid concepts considering wind platforms can help to push the technological development of other types of energy converters and improve their efficiency. In this article, a preliminary hydrodynamic assessment of a new concept of hybrid wind and wave energy conversion platform was performed, in order to evaluate the potential of wave power extraction. A multiple OWCs (Oscillating Water Column) WEC (Wave Energy Converter) design was adopted for the analysis and some simplifications were adopted to permit using a frequency domain approach to evaluate the mean wave power estimation for the location. Other strategies were used in the OWC design to create resonance in the sea energy range to try to maximize the potential power to be extracted, with good results.

Preliminary Design and Performance Analysis of Ducted Tidal Turbine

  • Jo, Chul-Hee;Lee, Kang-Hee;Kim, Do-Youb;Goo, Chan-Hoe
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.3
    • /
    • pp.176-185
    • /
    • 2015
  • Recently, focus has been placed on ocean energy resources because environmental concerns regarding the exploitation of hydrocarbons are increasing. Tidal current power, one of the ocean energy resources, has great potential worldwide due to its high energy density. The flow velocity is the most crucial factor for the power estimation of TCP(Tidal Current Power) system since the kinetic energy of the flow is proportional to the cube of the flow speed. So sufficient inflow speed to generate electricity from the tidal current power is necessary. A duct system can accelerate the flow velocity, which could expand the applicable area of TCP systems to relatively lower velocity sites. The shapes of the inlet and outlet could affect the flow rate inside the duct. To investigate the performance of the duct, various ducts were preliminary designed considering the entire system that is single-point moored TCP system and a series of simulations were carried out using ANSYS-CFX v13.0 CFD software. This study introduces a ducted turbine system that can be moored to a seabed. A performance estimation and comparison of results with conventional tidal converters were summarized in this paper.

Smart Power Management System for Leisure-ship

  • Park, Do-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.749-753
    • /
    • 2011
  • A leisure ship has a stand-alone type power system, and a generator is in use on this condition. But the generator cannot be operated in condition of leisure activity, ocean measurement and etc, because of environment and noise. Recently, renewable energy system is connected with power system of the leisure-ship for saving energy. The renewable energy system can not supply the stable power to leisure-ship because power generation changes according to weather condition. And most of the leisure ship is operated without methodical power management system. This study's purpose is to develop SPMS(Smart Power Management System) algorithm using the renewable energy (photovoltaic, wind power and etc.). The proposed algorithm is able to supply stable the power according to operation mode. Furthermore, the SPMS manages electric load (sailing and communication equipment, TV, fan, etc.) and reduces operating times of the generator. In this paper, the proposed algorithm is realized and executed by using LabVIEW. As a result, the hour for operating the generator is minimized.

HAT Tidal Current Turbine Design and Performance Test with Variable Loads (조류발전용 수평축 터빈의 형상설계 및 가변 부하를 이용한 성능실험)

  • Jo, Chul-Hee;Rho, Yu-Ho;Lee, Kang-Hee
    • New & Renewable Energy
    • /
    • v.8 no.1
    • /
    • pp.44-51
    • /
    • 2012
  • Due to a high tidal range of up to 10 m on the west coast of Korea, numerous tidal current projects are being planned and constructed. The turbine, which initially converts the tidal energy, is an important component because it affects the efficiency of the entire system. Its performance is determined by design variables such as the number of blades, the shape of foils, and the size of a hub. To design a turbine that can extract the maximum power on the site, the depth and duration of current velocity with respect to direction should be considered. Verifying the performance of a designed turbine is important, and requires a circulating water channel (CWC) facility. A physical model for the performance test of the turbine should be carefully designed and compared to results from computational fluid dynamics (CFD) analysis. In this study, a horizontal axis tidal current turbine is designed based on the blade element theory. The proposed turbine's performance is evaluated using both CFD and a CWC experiment. The sealing system, power train, measuring devices, and generator are arranged in a nacelle, and the complete TCP system is demonstrated in a laboratory scale.

Performance Analysis of 10kW Class Propeller Hydro Turbine by the Change of Flow Rates and the Number of Runner Vane Using CFD (CFD를 이용한 10kW급 모델 실험용 프로펠러 수차의 유량 및 러너 베인 깃 수 변화에 따른 성능해석)

  • Park, Ji-Hoon;Kim, You-Taek;Cho, Yong;Kim, Byeong-Kon;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.5-11
    • /
    • 2014
  • Small hydro power, among other renewable energy resources, has been evaluated to have enough development value because it is a clean, renewable and abundant energy resource. In addition, small hydro power has the advantage of low cost development by using existing facilities like sewage treatment plants, water works and similar resources. But in the case of small hydro power systems, there are problems with degraded operation efficiency of turbine due to changes in flow rates. In order to overcome this, variable speed control can be achieved by using the power rectifier and permanent magnetic synchronous generator(PMSG) as a possible method to respond to the changes in flow rates. In this study, a commercial ANSYS CFD code was used to analyze the performance of 10kW class propeller hydro turbine and to also investigate flow characteristics at variable flow rates and runner vane.