• Title/Summary/Keyword: Ocean engineering

Search Result 11,641, Processing Time 0.033 seconds

Numerical and Experimental Study on Motion Response of 1MW OTEC Platform (1MW OTEC 구조물의 운동 응답에 대한 수치 및 모형시험 연구)

  • Kwon, Yong-Ju;Nam, Bo Woo;Kim, Namwoo;Jung, Dong-Ho;Hong, Sa Young;Kim, Hyeon-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • The 1MW OTEC (Ocean Thermal Energy Conversion) platform was designed for application in equatorial seas. In this study, the OTEC platform was investigated using numerical and experimental methods. An octagon-shaped OTEC platform was investigated using the Ocean Engineering Basin of KRISO. These experiments included various tests of regular waves, irregular waves and irregular waves with current (wave+current). The responses of the platform in regular waves showed good agreement between the numerical and experimental results, including the motion RAO, wave run up, and mean drift force. The peak period of heave and pitch motions were observed around 0.5 rad/s, and the effect of the total reflection was found under short wave conditions. The standard deviation (STD) of the platform motion was checked in irregular waves of equatorial and Hawaiian seas. The STD of the pitch was less than $4^{\circ}$ different from the operability requirement under equatorial conditions and the surge STD of the wave frequency showed good agreement between the numerical and experimental results. The STD values of the surge and pitch were increased 66.6% and 92.8% by the current effects in irregular waves, but the pitch STD was less than $4^{\circ}$ under equatorial conditions. This study showed that the STD of the surge was affected by spring effects. Thus, the watch circle of the platform and tension of the mooring lines must be evaluated for a specific design in the future.

FLUID MASS STREAMING IN A CHANNEL UNDER STANDING WALLS VIBRATIONS

  • Lee, Kwi-Joo;Shugan, Igor;Kim, Kyoung-Hwa
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.171-176
    • /
    • 2003
  • Peristaltic mass transfer of fluid in a channel with standing wall oscillations is analyzed. Averaged nonlinear Navier-Stokes equations of motion are examined for a wide range of Reynolds numbers and external pressure drops. Nonpropogating wall oscillations with relatively big amplitudes essentially increase the liquid flow. Most effective intensifying of mass transfer occurred for low Reynolds numbers.

  • PDF

Review of Internal Waves in Ocean (해양에서의 내부파)

  • Cho, Yong-Sik;Lee, Bong-Hee;Yoon, Tae-Hoon
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2000.09a
    • /
    • pp.113-119
    • /
    • 2000
  • Internal waves, including all kinds of wave phenomena inside a stratified fluid system, have been a subject of interest for a long time in geophysics, coastal and ocean engineering, applied mathematics and hydrodynamics. The vast oceans on the earth are a complex stratified fluid system widely distributed with pycnoclines, which are horizontally layered regions with a large density variation, commonly located about 50-150 meters below the ocean surface. (omitted)

  • PDF

Study on Influence of Ship Speed on Local Ice Loads on Bow of the IBRV ARAON

  • Kim, Tae-Wook;Choi, Kyungsik;Lee, Jong-Hyun;Lee, Tak-Kee
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.25-35
    • /
    • 2015
  • This study presents the analysis of relationship between ship speed and local ice load on the Korean Icebreaker ARAON. The relationship curves were made from the data obtained at two areas: the Arctic and the Antarctic; and for two operation condition: the icebreaking condition in sea ice trial and general operation in ice covered sea. The strain data were converted to the equivalent stress value, and the influence of ship speed on the local ice load was analyzed and compared each other. These analysis results are useful in working on a statistically valid hull design approach.

The Spectrally Accurate Method Applied to Wave-Current Interaction as a Freak Wave Generation Mechanism

  • Sung, Hong-Gun;Hong, Key-Yong;Kyoung, Jo-Hyun;Hong, Sa-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.113-120
    • /
    • 2006
  • In this paper, generation mechanisms of ocean freak waves are briefly introduced in the context of wave-current interaction phenomena. As an accurate and efficient numerical tool, the spectral element method is presented with general features and specific treatment for the wave-current interaction problem. The present model of the fluid motion is based on the Navier-Stokes equations incorporating a velocity-pressure formulation. In order to deal with the free surface motion, an Arbitrary Lagrangian-Eulerian (ALE) description is adopted. As an intermediate stage of development, solution procedure and characteristic aspects of the present modeling and numerical method features are addressed in detail, and numerical results for wave-current interaction is left as further study.

  • PDF

Estimation of Wave Loads Acting on Stationary Floating Body Using Viscous Numerical Wave Tank Technique (점성 수치파랑수조 기술을 이용한 고정된 부유체의 파랑하중 산정)

  • Kim, Kyung-Mi;Heo, Jae-Kyung;Jeong, Se-Min;Park, Jong-Chun;Kim, Wu-Joan;Cho, Yong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.43-52
    • /
    • 2013
  • In the present study, a flow analysis for estimating the wave loads acting on a stationary floating body inside a viscous numerical wave tank was performed using the commercial software FLUENT. The governing equations for the viscous and incompressible fluid motion were the continuity and Navier-Stokes equations, and a piston-type wavemaker was employed to reproduce wave environments. First, the optimal simulation conditions were derived through numerical tests for the wavemaker and wave absorber, and then the wave loads and wave run-up on a vertical truncated cylinder were estimated and compared with the experimental and other numerical results.

Relation Between Measured Sea Ice Thickness and Freeboard on Chukchi and Beaufort Seas (추코트와 보퍼트 해에서 계측된 해빙 두께와 건현과의 관계)

  • Jeong, Seong-Yeob;Choi, Kyungsik;Cho, Seong-Rak;Kang, Kuk-Jin;Lee, Chun-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.527-532
    • /
    • 2014
  • The thickness of Arctic sea ice is a particularly significant factor in Arctic shipping and other ice-related research areas such as scientific sea ice investigations and Arctic engineering. In this study, the relation between the measured sea ice thickness and freeboard on the Chukchi and Beaufort Seas during the 2010 and 2011 Arctic cruise of the icebreaking research vessel "Araon" were considered. An assumption of hydrostatic equilibrium was used to estimate the ice thickness as a function of the freeboard. Then, to examine the degree of error, a sensitivity analysis of the thickness estimation of the sea ice was conducted. The error in the density and depth of the snow and the error in the density of the seawater were subordinate parameters, but the density of the ice and the freeboard were the primary parameters in the error calculation. The presented relation formula showed fairly close agreement between the calculated and measured results at a freeboard of >0.24 m.

Study on Damage Detection Method using Meta Model (메타모델을 이용한 손상추정 기법 연구)

  • Min, Cheon-Hong;Cho, Su-Gil;Oh, Jae-Won;Kim, Hyung-Woo;Hong, Sup;Nam, Bo-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.351-358
    • /
    • 2015
  • This paper presents an effective damage detection method using a meta model. A meta model is an approximation model that uses the relations between the design and response variables. It eliminates the need for repetitive analyses of computationally expensive models during the optimization process. In this study, a response surface model was employed as the meta model. The surface model was estimated using the correlation of the stiffness and natural frequencies of the structures. The locations and values of the damages were identified using a meta model-based damage detection method. Two numerical examples (a cantilever beam and jacket structure) were considered to verify the performance of the proposed method. As a result, the damages to the structures were accurately detected.

An Experimental Study on Steering Performance of Tracked Vehicle on Deep-sea Cohesive Soft Soil by DOE using Orthogonal Arrays (직교배열표 실험계획법에 의한 심해저 점착성 연약지반용 무한궤도차량의 선회성능에 대한 실험 연구)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.37-42
    • /
    • 2006
  • This paper is concerned with experimental investigation of steering performance of a tracked vehicle on extremely soft soil. A tracked vehicle model with principal dimensions of 0.9 m(L)x0.75 m(B)x0.4 m(H) and weight of 167 kg was constructed with a pair of driving chain links, driven by two AC-servo motors. The tracks were configured with detachable grousers with variable span. A deep seabed was simulated by means of a bentonite-water mixture in a soil bin of 6.0 m(L)x3.7 m(B)x0.7 m(H). The turning radii of vehicle and driving torques of motors were measured with respect to experiment variables: steering ratio, driving speed, grouser chevron angle, grouser span, and grouser height. L8 orthogonal table is adopted for DOE (Design of experiment). The effects of experiment variables on steering performance are evaluated.