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FLUID MASS STREAMING
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ABSTRACT
Peristaltic mass transfer of fluid in a channel with standing wall oscillations is analyzed. Averaged

nonlinear Navier—Stokes equations of motion are examined for a wide range of Reynolds numbers and

external pressure drops. Nonpropogating wall oscillations with relatively big amplitudes essentially

increase the liquid flow. Most effective intensifying of mass transfer occurred for low Reynolds numbers.
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1. Introduction

Traveling wall waves in fluid filled channel
normally induce fluid mass transport in the direction
of wave propagation. This mechanism is very
important for living organisms [1-4]. Peristaltic flows
are being used in several modifications of pumps,
including those using extreme modes of totally
blocked “pieces” of liquid pumping with maximal
mass transfer rate [5, 6]. Filtration velocity of liquid
in two-phase porous media can be greatly intensified
under the influence of some kinds of vibrations, it is a
well known experimental effect, used in oil industry.

The vibrational Reynolds number Re=d’c/v is
the main dimensionless parameter of the problem.
Here o is the characteristic frequency of the wall
oscillations, v is the kinematic viscosity of the fluid,
and a is the characteristic channel width. These
parameters determine the balance between inertial
and viscous effects.

Nowadays, many investigations are devoted to the
modeling of such processes. The basic physical
principle of this effect seems to be clear: viscosity
plays the dominant role in the formation of flow in
the direction of waves propagation, i.e. along the
channel walls and gives rise to a complex fluid flow
with vortices, recurrent jets, where the main
mechanism of the mass transport is the fluid drift.

In literature the mass transfer of fluid for different
Reynolds numbers and pressure drops along the
channel was investigated [7,8] . These works present
results of analytical and numerical solutions of the
Navier-Stokes equations for incompressible viscous
fluids, two-dimensional fields of oscillating and drift
velocities and mass transport characteristics. The
possibilities for particles drift and recurrent flows
were investigated, which are of interest for
biomechanical and physiological applications.
Investigations of complicated spiral trajectories of
individual particles were carried out based on
Lagrangian approach to fluid flows description.

Investigations of particles’ trajectories showed the
possibility of fluid particles motion in the direction
opposite to the main stream.

The two-phase model of the oscillatory fluid
motion in a channel with elastic walls was suggested
in [9]. It is basically different from the generally
adopted one-way coupling models assuming
unchangeable oscillation modes of the channel walls.
The presence of the viscous fluid leads to essential
decrease of bending oscillation velocity in the walls
and damping of the waves.

The performed investigation demonstrates the
efficiency of the mass transport at standing wave
modes of wall oscillations, which are relatively
rapidly damped along the tube. This statement
changes the established opinion considering the
traveling wave modes to be the basic mechanism for
fluid pumping in a channel with vibrating walls.
Weakly nonlinear solution suggested in [9] described
fluid drift flow in the second order of approximation
in the wave steepness, while strongly nonlinear
modes were beyond the consideration.

The purpose of this paper is to develop a model of
fluid mass transfer for a new method of peristaltic
pumping with walls oscillating in a standing mode.
The model will be based on a fully nonlinear
statement of the problem. Nonlinear nonstationary
Navier—Stokes equations are analyzed by integral
method within the frame of a boundary layer type
approximation. Such a model has no restrictions on
the amplitudes of wall oscillations and allows one to
go so far as to analyze different marginal modes of
motion with almost complete blocking of the channel
for different ranges of Re number.

Figure 1. Schema of the flat channel: L and a are the
length and halfwidth of the channel, respectively; b is
the wall oscillations amplitude; the area between the
channel walls is filled with fluid.

2. Formulation of the problem.
Integral method
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Let us consider a planar channel of length L and
width 2a (Fig. 1) filled with a viscous incompressible
fluid. Orthogonal coordinate system is used, with X
being the symmetry axis and Y being the
perpendicular. If the plates are not moving, the fluid
is either at rest, or its flow is determined by the
influence of an external pressure gradient.

Displacements of both walls are symmetrical with
respect to the axis ¥ = 0.

The fluid motion is modeled by an incompressible
viscous laminar flow.

In this case, the mass balance equation is given by

Uy +Vy =0, (M

where U and V are respectively the X and Y
components of the fluid velocity vector.

The Navier-Stokes equations projected on the two
coordinate axes are written as

U'I' +UUX +VUY =‘—LPX +VF(UXX +Uyy),
P )

Vi +UVy +VVy = —lP, +vi(Vax +Vir )s
Pr

where pr is the fluid density, v is its kinematic
viscosity, T is the time, and P is the pressure.

In order to formulate the problem completely, it is
necessary to set up the conditions at the solid wall.
The kinematic conditions are determined by the
adhesion of the viscous fluid to the solid oscillating
wall (no cavitation allowed),

Hy=V, U=0 at Y=H(X,T), 3)

H being the variable width.

Oscillations of the walls are assumed standing,
harmonic in time with frequency o uniform along the
channel

H(X,T)=a+bcos(aT), 4

b is the wall oscillation amplitude.
The symmetry of the problem allows one to seek
for the fluid flow solution with the corresponding

symmetry, i.e. '
Uy =V=0 at Y=0, )

and the last boundary condition is the pressure drop,
P(X=L/2,T)-P(X=-L/2,T)= AP(T). (6)

Dimensionless variables are introduced as

X Y U
x=—, y=—, t=0T, u=—,

L a oL
V=L, p=-%Re, h=ﬂ.

oa oL p; a

In this work we suppose that the ratio of the
channel width to the length of channel is small:
a/L << 1. This assumption is also valid for small
characteristic gradients of the flow parameters
along the longitudinal coordinate in comparison
with the flow parameters changes across the

channel (approximation similar to the boundary
layer theory).

This approximation makes it possible to neglect
the terms of (a/L)’ in the dimensionless form of
equations of motion (1)~(2). Thus, according to these
assumptions, the governing system of equations and
the boundary conditions are written as

u+v,=0, @)

Re(u,+uux+ Vuy)=—p,+uw, p,=0, (8

ul,_,=0 V_,=h, ©)
h(t)=1+¢&cost (10)
p(%5:t)-p(=%.t)=2p(r), (D
|, o= Vl,0=0- (12)

Due to the symmetry of the problem, only the upper
half of the channel will be considered.

Integral method. Let us introduce one more
physical variable, a normalized mass flux
through the cross section of the tube,

k1)
Q(x,t): ju(x,y,t) dy. (13)
0

Integrating the continuity equation (7) over cross
section and using the latter of boundary conditions (9)
gives .

O, +h =0. (14)

Taking into account the known function of the wall
oscillations (10), finally one arrives at

O(x,t)=Q,(t)+&xsint  (15)

where Qy(f) is a free function of time to be
determined.

Momentum equation (8), averaged over a cross
section of the channel, can be given as

h(1)
Re| O, -i{ qudyJ =—p,h(x,t)+uy|y=h(l). (16)
0 X
To model the longitudinal velocity u(x,y, ), we
assume the locally Poiseuille profile as

“(x’y,1)=-;-%((:;—§)[hz(r)—y2]. a7

This expression satisfied boundary conditions (9) and
integral continuity equation (14).
Substitution of (17) into (16) yields

Re Q,(x,t)+g[—Q2x(—;t))l s, p,h(,)_?%((i;)‘),(ns)
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Finally, to satisfy integral momentum equation
(18) and the boundary condition for pressure (11) we
still have two unknown functions: pressure p(x, f) and
time term in mass flux function Qq(¥).

The problem could be solved in the following way.

Integration of (18) over the channel length yields the
ordinary differential equation to determine Qo(?),

12_ 48 1(12
RC[QOI-?QO_h'*'E("S_hIZ _hn):l

0, 3h
+3=——=-Ap()h. (19)
hZ 2h2 p( )

Pressure distributions along the tube could be
gained from (18) after solving (19) for QOy(z).

3. Flow structure and mass transport of liquid in
the channel

Vibrations of the walls are uniform along the tube
(10), so they can only modify already existing liquid
mass transport due to the difference of the external
pressure.

Structure of the flow and mass transport in the
presence of pressure drop and wall vibrations are
determined by the following set of nondimensionless
parameters: Re, &, and Ap.

To make things simpler, let us assume the external
pressure difference Ap constant (not time-dependent).
Numerical solution of (19) and (18) with boundary
conditions (11) for a wide range: of governing
parameters evidently shows that the maximal effect
of the vibrations upon the flow characteristics could
be achieved for low and moderate Reynolds numbers.

Let us consider low Rayleigh numbers: Re << |
first. Oscillating walls cause maximal increase of
liquid mass transport in this case.

The streaming of liquid is characterized by the
average of the mass flux at the exit over the period of
oscillations,

2r
Ou = [Q(4st) . (20)

0

Mass transport of liquid along the channel is
intensified on increasing the wall oscillations. The
gain is given by

k=Qav/Qst' 21)

The dependences of Q,, on the pressure drop Ap
for all cases are almost linear. Thus, the mass
transport gain k can be assumed as a pure function of
the wall oscillation amplitude &= k(&). This function
is shown at Fig.2. Mass transport for large
amplitudes of wall oscillations £= 0.9 more than two
times surpasses the stationary solution.

Figure 2. Dependence of the mass transport gain & on
the wall oscillation amplitudes.

The dynamic of fluid flow through the channel is
illustrated in Fig. 3 for wall oscillation amplitudes
£20.6 and Re=0.1. The function of liquid mass
transport Q(¢) is shown in Fig.3b. It has a highly
nonstationary behavior with large oscillations being
in the same phase, as wall oscillations shown in
Fig. 3a.

Distribution of longitudinal velocity along the
channel is almost linear for all instants of time, and
velocity gradient has two extrema during the period
of oscillations. Time dependence of velocities along
the axis of the tube is represented in Fig. 3¢ for three
cross sections: (/) at the entrance, (2) at the exit, (3)
in the middle of the channel. At the end of
compression phase /#,<0 the velocity at the exit of
the channel has maximum, and at the entrance of
tube—minimum. At the very beginning of the
expansion of the channel (4, > 0) velocity at the outlet
is minimal and velocity at the inlet is maximal.
Velocity in the middle cross section is almost
constant in time and corresponds to a stationary
solution with £=0.

Figure 3. Fluid mass transport dynamics Q('%,1) (b)
and velocity u(t) ¢ versus time in different cross
sections of the tube:(/) x="', (2) x=-', and (3)
x=0;Re=0.1,Ap =10, £=0.6.

Time variation of fluid flow parameters greatly
increased for big amplitudes of wall oscillations.
Dynamics of mass transport and velocity distributions
are shown in Fig. 4. The mass transport oscillations
are shown in Fig. 4b, wall oscillations are shown in
Fig. 4a. The amplitudes of oscillations here are much
bigger as compared to those shown in Fig. 3.

Figure 4. Fluid mass transport Q('%,¢) (b) and
velocity u(f) variations ¢ versus time in different cross
sections of the tube: (/) x="'%, (2) x=-'%, and (3)
x=0;Re=0.1,Ap=10, £=0.9.

Another characteristic feature of this mode is the
presence of two high velocity liquid jets going in
opposite directions at the entrance and at the exit of
the channel. At the end of contraction phase (4, > 0)
those jets go out of the channel; at the beginning of
expansion of the channel (4, > 0) the jets go inside the
channel (see Fig. 4c). Jets of such type could play an
important role in enhancing the mass transfer in
porous media under the influence of vibrations.

Mass transport and flow dynamics for moderate
Reynolds numbers Re ~ 1 keep ‘the same mean pro-
perties with slightly weaker characteristics. The de-
pendence of the gain £ on the wall oscillation
amplitudes & is shown in Fig. 5 for Re = 1. Average
fluid flow increased with enlarging of wall
oscillations. Big amplitudes (£>0.9) can also
generate periodically strong fluid jets outside the
channel. :

Figure 5. Mass transport gain for Re = 1.
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Next order of Reynolds parameter Re ~ 10 gives a
quick decrease of mass transport characteristics: wall
oscillations can give only about 20 % enhancement
for big-amplitude vibrations.

Wall oscillations at high Reynolds numbers
Re ~ 100 and more do not have any essential positive
effect on the intensification of fluid mass transport
through the channel. Moreover, gains for high
Reynolds numbers could be less then unit.

4, Conclusion

The results of theoretical investigations show that
standing transverse oscillations of channel walls can
significantly increase the mass transport through the
channel, as compared to an unperturbed flow.
Investigations of the dependence of mass transport
gain on the dimensionless governing parameters
made it possible to distinguish conditions under
which the effect of vibrations is maximum.

High velocity fluid jets induced periodically due
to vibrations could play an important role in
enhancing mass transfer in porous media under the
influence of vibrations.

The found results can serve as an explanation to
the fact that low frequency vibrations essentially
increase the filtration rate in porous media and natural
soils, in particular.
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Figure 1. Schema of the flat channel: L and a are the

length and halfwidth of the channel, respectively; b is

the wall oscillations amplitude; the area between the
channel walls is filled with fluid.
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Figure 2. Dependence of the mass transport gain £ on

the wall oscillation amplitudes.
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Figure 3. Fluid mass transport dynamics Q('%, 1) (b)
and velocity u(f) ¢ versus time in different cross
sections of the tube:(/) x = !4, (2) x =-', and (3)
x=0;Re=0.1,Ap =10, £=0.6.
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Figure 4. Fluid mass transport O('%, t) (b) and
velocity #(¢) variations ¢ versus time in different cross
sections of the tube: (/) x =%, (2) x =—'%, and (3)
x=0;Re=0.1,Ap=10, £=0.9.
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Figure 5. Mass transport gain for Re = 1.
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