• Title/Summary/Keyword: Ocean energy

Search Result 2,454, Processing Time 0.034 seconds

Preliminary Design of mooring line in floating wave energy farm (부유식 파력발전단지 조성을 위한 계류선 초기설계)

  • Jung, DongHo;Song, JaeHa;Shin, SeungHo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.16-21
    • /
    • 2013
  • In this paper, the mooring system for a floating wave energy farm is designed based on a two-dimensional analysis. The mooring system uses an anchorless mooring line linking two floaters in a floating wave energy farm. The basic equation to determine the length of the mooring line between the two floaters is proposed. The other properties such as the diameter and pretension are taken from the mooring line for a single floater. The dynamic behavior and safety of the designed mooring system under extreme ocean conditions are analyzed with the commercial software Orcaflex. A numerical study shows the stability and high safety in tension of the designed mooring lines for a floating wave energy farm. The proposed anchorless mooring system for a floating wave energy farm results in a considerable reduction in the length of the mooring line, contributing to the economics of a floating wave energy farm.

Motion Analysis of A Wind-Wave Energy TLP Platform Considering Second-order Wave Forces

  • Hongbhin Kim;Eun-hong Min;Sanghwan Heo;WeonCheol Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.390-402
    • /
    • 2022
  • Offshore wind energy has become a major energy source, and various studies are underway to increase the economic feasibility of floating offshore wind turbines (FOWT). In this study, the characteristics of wave-induced motion of a combined wind-wave energy platform were analyzed to reduce the variability of energy extraction. A user subroutine was developed, and numerical analysis was performed in connection with the ANSYS-AQWA hydrodynamic program in the time domain. A platform combining the TLP-type FOWT and the Wavestar-type wave energy converter (WEC) was proposed. Each motion response of the platform on the second-order wave load, the effect of WEC attachment and Power take-off (PTO) force were analyzed. The mooring line tension according to the installation location was also analyzed. The vertical motion of a single FOWT was increased approximately three times due to the second-order sum-frequency wave load. The PTO force of the WEC played as a vertical motion damper for the combined platform. The tension of the mooring lines in front of the incident wave direction was dominantly affected by the pitch of the platform, and the mooring lines located at the side of the platform were mainly affected by the heave of the platform.

Ocean Energy Resources and Its Application (해양 에너지 자원과 그 이용)

  • 강영승
    • Journal of the Korean Professional Engineers Association
    • /
    • v.37 no.1
    • /
    • pp.43-47
    • /
    • 2004
  • The purpose of this article is to introduce ocean energy and its application. In recent years, the energy consumption and requirement of fossil resources are increased due to the advanced life style. But, the amount of fossil fuels have limitation. Also, it is difficult to construct new large power plant facilities for the production of electric energy. Therefore, the necessities to study and to find out other energy resources are increased more and more. In the ocean, the efforts of using tide, wave, tidal current and thermal energy are should be attempt. To satisfy the needs, corporation is required among the government, research institute, university and company.

  • PDF

Comparison of LCOE of the Southwest Offshore Wind Farm According to Types and Construction Methods of Supporting Structures (해상풍력 지지구조물 형식 및 시공 방법에 따른 서남해 해상풍력실증단지의 균등화발전비용 비교)

  • SeoHo Yoon;Sun Bin Kim;Gil Lim Yoon;Jin-Hak Yi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.3
    • /
    • pp.57-66
    • /
    • 2023
  • In order to understand the economic feasibility of an offshore wind farm, this paper analyzed the differences in LCOE (levelized cost of energy) according to the support type and construction method of the substructure in terms of LCOE and sensitivity analysis was conducted according to the main components of LCOE. As for the site to be studied, the Southwest Offshore Wind Farm was selected, and the capital expenditures were calculated according to the size of the offshore wind farm and the installation unit. As a result of the sensitivity analysis, major components showed high sensitivity to availability, turbine related cost, weighted average cost of capital and balance of system related cost. Moreover, the post-piling jacket method, which was representatively applied to the substructure of the offshore wind farm in Korea, was selected as a basic plan to calculate the capital expenditures, and then the capital expenditures of the pre-piling jacket method and the tripod method were calculated and compared. As a result of analyzing the LCOE, it was confirmed that the pre-piling jacket method of the supporting structure lowers the LCOE and improves economic feasibility as the installation number of turbines increases.

Dynamic Model for Ocean Thermal Energy Conversion Plant with Working Fluid of Binary Mixtures

  • Nakamura, Masatoshi;Zhang, Yong;Bai, Ou;Ikegami, Yasuyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2304-2308
    • /
    • 2003
  • Ocean thermal energy conversion (OTEC) is an effective method of power generation, which has a small impact on the environment and can be utilized semi-permanently. This paper describes a dynamic model for a pilot OTEC plant built by the Institute of Ocean Energy, Saga University, Japan. This plant is based on Uehara cycle, in which binary mixtures of ammonia and water is used as the working fluid. Some simulation results attained by this model and the analysis of the results are presented. The developed computer simulation can be used to actual practice effectively, such as stable control in a steady operation, optimal determination of the plant specifications for a higher thermal efficiency and evaluation of the economic prospects and off-line training for the operators of OTEC plant.

  • PDF

Influence of slot width on the performance of multi-stage overtopping wave energy converters

  • Jungrungruengtaworn, Sirirat;Hyun, Beom-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.668-676
    • /
    • 2017
  • A two-dimensional numerical investigation is performed to study the influence of slot width of multi-stage stationary floating overtopping wave energy devices on overtopping flow rate and performance. The hydraulic efficiency based on captured crest energy of different device layouts is compared with that of single-stage device to determine the effect of the geometrical design. The results show optimal trends giving a huge increase in overtopping energy. Plots of efficiency versus the relative slot width show that, for multi-stage devices, the greatest hydraulic efficiency is achieved at an intermediate value of the variable within the parametric range considered, relative slot width of 0.15 and 0.2 depending on design layouts. Moreover, an application of adaptive slot width of multi-stage device is investigated. The numerical results show that the overall hydraulic efficiency of non-adaptive and adaptive slot devices are approximately on par. The effect of adaptive slot width on performance can be negligible.

The research of vibration power generation to make effective use of ocean wave energy (파도에너지를 효율적으로 이용하기위한 파력진동발전기에 대한 연구)

  • Lee, Hong-Chan;Lee, Jae-Ho;Han, Ki-Bong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.75-75
    • /
    • 2011
  • This paper has been studied that ocean wave vibration power generator is composed of buoy and vibration generator to make effective use of ocean wave energy. We designed buoy to can occur resonance for dominant frequency with ocean wave. And then we fitted the natural frequency of vibration system with vibration power generator to buoy's natural frequency. And we can show that the amplitude of ocean wave up and down motion is decreased, on the other hand, the displacement of vibration system with vibration power generator is increased. Therefore, ocean wave vibration power generator which is proposed in this paper has merits not only securing its stability from surroundings but also producing more electronic power by using ocean wave energy.

  • PDF

Ocean Wave Energy Converters - A Perspective

  • Parthasarathy, Nanjundan;Li, Kui Ming;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.707-715
    • /
    • 2012
  • Ocean waves are mighty and powerful. Humans have explored the possibility of harnessing this mighty power for decades now. Estimated as suffice, if only, a fraction of this energy is captured and harnessed, the worry for decrease in fossil fuels diminishes and the current energy consumption of the world can be met. Though different types of methods and devices for extracting energy from this nonstop, free source has been proposed, a handful of them have reached commercialization and others are on the verge. This paper discusses the journey so far in terms of devices that have been developed or prototypes proposed or commercialized. Only a list full of them have been discussed though they exist in numbers.

A study on the Development of Energy-Saving Device "Crown Duct"

  • Lee, Kwi-Joo;An, Jung-Sun;Yang, Sun-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.1-4
    • /
    • 2012
  • A energy saving device "Crown duct" has been developed and its efficiency gain has been verified experimentally in the towing tank of SSPA. The preswirl stator is well known as one of energy saving devices, which recovering the rotational energy of propeller slipstream. Crown duct has two functions of recovers the rotational energy by three blades on top of duct and of flow concentration by semi-duct. The model tests showed 4.4% efficiency gain with Crown Duct at full load condition and 6.9% at ballast condition compared with the bare hull ones for the middle class tanker.

Development of A Floating Solar Thermoelectric Generator Using A Dome Shaped Fresnel Lens for Ocean Application

  • Seong-Hoon Kim;Jeung-Sang Go
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_1
    • /
    • pp.1001-1010
    • /
    • 2023
  • To solve the problem that photovoltaic panels can not harvest electrical energy at a cloudy day and night, a floating solar thermoelectric generator (FSTEG, hereafter) is studied. The FSTEG is consisted of a dome shaped Fresnel lens to condense solar energy, a thermoelectric module connected with a heat sink to keep temperature difference, a floating system simulating a wavy ocean and an electrical circuit for energy storage. The dome shaped Fresnel lens was designed to have 29 prisms and its optical performance was evaluated outdoors under natural sunlight. Four thermoelectric modules were electrically connected and its performance was evaluated. The generated energy w as stored in a Li-ion battery by using a DC-DC step-up converter. For the application of ocean environment, the FSTEG was covered by the dome shaped Fresnel lens and sealed to float in a water-filled reservoir. The harvested energy shows a potential and a method that the FSTEG is suitable for the energy generation in the ocean environment.