• Title/Summary/Keyword: Ocean energy

Search Result 2,493, Processing Time 0.037 seconds

Sea Ice Drift Tracking from SAR Images and GPS Tracker (SAR 영상과 GPS 추적기를 이용한 여름철 해빙 이동 궤적 추적)

  • Jeong-Won Park;Hyun-Cheol Kim;Minji Seo;Ji-Eun Park;Jinku Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.257-268
    • /
    • 2023
  • Sea ice plays an important role in Earth's climate by regulating the amount of solar energy absorbed and controlling the exchange of heat and material across the air-sea interface. Its growth, drift, and melting are monitored on a regular basis by satellite observations. However, low-resolution products with passive microwave radiometer have reduced accuracy during summer to autumn when the ice surface changes rapidly. Synthetic aperture radar (SAR) observations are emerging as a powerful complementary, but previous researches have mainly focused on winter ice. In this study, sea ice drift tracking was evaluated and analyzed using SAR images and tracker with global positioning system (GPS) during late summer-early autumn period when ice surface condition changes a lot. The results showed that observational uncertainty increases compared to winter period, however, the correlation coefficient with GPS measurements was excellent at 0.98, and the performance of the ice tracking algorithm was proportional to the sea ice concentration with a correlation coefficient of 0.59 for ice concentrations above 50%.

A study on statistical characteristics of time-varying underwater acoustic communication channel influenced by surface roughness (수면 거칠기에 따른 수면 경로의 시변 통신채널 통계적 특성 분석)

  • In-Seong Hwang;Kang-Hoon Choi;Jee Woong Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.491-499
    • /
    • 2023
  • Scattering by Sea surface roughness occurs due to sea level roughness, communication performance deteriorates by causing frequency spread in communication signals and time variation in communication channels. In order to compare the difference in time variation of underwater acoustic communication channel according to the surface roughness, an experiment was performed in a tank owned by Hanyang University Ocean Acoustics Lab. Artificial surface roughness was created in the tank and communication signals with three bandwidths were used (8 kHz, 16 kHz, 32 kHz). The measured surface roughness was converted into a Rayleigh parameter and used as a roughness parameter, and statistical analysis was performed on the time-varying channel characteristics of the surface path using Doppler spread and correlation time. For the Doppler spread of the surface path, the Weighted Root Mean Square Doppler spread (wfσν) that corrected the effect of the carrier frequency and bandwidth of the communication signal was used. Using the correlation time of the surface path and the energy ratio of the direct path and the surface path, the correlation of total channels was simulated and compared with the measured correlation time of total channels. In this study, we propose a method for efficient communication signal design in an arbitrary marine environment by using the time-varying characteristics of the sea surface path according to the sea surface roughness.

A Study on Energy Savings of a DC-based Variable Speed Power Generation System (직류기반 가변속 발전 시스템을 이용한 에너지 절감에 관한 연구)

  • Kido Park;Gilltae Roh;Kyunghwa Kim;Changjae Moon;Jongsu Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.666-671
    • /
    • 2023
  • As international environmental regulations on ship emissions are gradually strengthened, interest in electric propulsion and hybrid propulsion ships is increasing, and various solutions are being developed and applied to these ships, especially stabilization of the power system and system efficiency. The direct current distribution system is being applied as a way to increase the power. In addition, verification and testing of safety and performance of marine DC distribution systems is required. As a result of establishing a DC distribution test bed, verifying the performance of the DC distribution (variable speed power generation) system, and analyzing fuel consumption, this study applied a variable speed power generation system that is applied to DC power distribution for ships, and converted the power output from the generator into a rectifier. A system was developed to convert direct current power to connect to the system and monitor and control these devices. Through tests using this DC distribution system, the maximum voltage was 751.5V and the minimum voltage was 731.4V, and the voltage fluctuation rate was 2.7%, confirming that the voltage is stably supplied within 3%, and a variable speed power generation system was installed according to load fluctuations. When applied, it was confirmed through testing that fuel consumption could be reduced by more than 20% depending on the section compared to the existing constant speed power generation system.

Design of Ship-type Floating LiDAR Buoy System for Wind Resource Measurement inthe Korean West Sea and Numerical Analysis of Stability Assessment of Mooring System (서해안 해상풍력단지 풍황관측용 부유식 라이다 운영을 위한 선박형 부표식 설계 및 계류 시스템의 수치 해석적 안정성 평가)

  • Yong-Soo, Gang;Jong-Kyu, Kim;Baek-Bum, Lee;Su-In, Yang;Jong-Wook, Kim
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.483-490
    • /
    • 2022
  • Floating LiDAR is a system that provides a new paradigm for wind condition observation, which is essential when creating an offshore wind farm. As it can save time and money, minimize environmental impact, and even reduce backlash from local communities, it is emerging as the industry standard. However, the design and verification of a stable platform is very important, as disturbance factors caused by fluctuations of the buoy affect the reliability of observation data. In Korea, due to the nation's late entry into the technology, a number of foreign equipment manufacturers are dominating the domestic market. The west coast of Korea is a shallow sea environment with a very large tidal difference, so strong currents repeatedly appear depending on the region, and waves of strong energy that differ by season are formed. This paper conducted a study examining buoys suitable for LiDAR operation in the waters of Korea, which have such complex environmental characteristics. In this paper, we will introduce examples of optimized design and verification of ship-type buoys, which were applied first, and derive important concepts that will serve as the basis for the development of various platforms in the future.

Comparing Physical and Thermal Environments Using UAV Imagery and ENVI-met (UAV 영상과 ENVI-met 활용 물리적 환경과 열적 환경 비교)

  • Seounghyeon KIM;Kyunghun PARK;Bonggeun SONG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.145-160
    • /
    • 2023
  • The purpose of this study was to compare and analyze diurnal thermal environments using Unmanned Aerial Vehicles(UAV)-derived physical parameters(NDVI, SVF) and ENVI-met modeling. The research findings revealed significant correlations, with a significance level of 1%, between UAV-derived NDVI, SVF, and thermal environment elements such as S↑, S↓, L↓, L↑, Land Surface Temperature(LST), and Tmrt. In particular, NDVI showed a strong negative correlation with S↑, reaching a minimum of -0.52** at 12:00, and exhibited a positive correlation of 0.53** or higher with L↓ at all times. A significant negative correlation of -0.61** with LST was observed at 13:00, suggesting the high relevance of NDVI to long-wavelength radiation. Regarding SVF, the results showed a strong relationship with long-wave radiative flux, depending on the SVF range. These research findings offer an integrated approach to evaluating thermal comfort and microclimates in urban areas. Furthermore, they can be applied to understand the impact of urban design and landscape characteristics on pedestrian thermal comfort.

Investigation on the Enhancement of the Flotation Performance in Fine Molybdenum Particles Based on the Probability of Collision Model (충돌확률 모델에 의한 미립 몰리브덴광의 부유선별 효율 향상 연구)

  • Jisu Yang;Kyoungkeun Yoo;Joobeom Seo;Seongsoo Han
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.38-47
    • /
    • 2024
  • Molybdenite is the primary molybdenum resource and is extracted via flotation due to its unique hydrophobic surface. Meanwhile, the grade and crystal size of mined molybdenite are decreasing. As a result, the size of the molybdenum ore required for liberation is decreasing, and the flotation process's feed size input is also decreasing. Therefore, in order to secure molybdenum, it is necessary to perform research on the flotation for the fine molybdenite. In this study, we developed a method to enhance the flotation efficiency of fine molybdenite particles in the range of 5-30 ㎛. The methodology involved implementing bubble size reduction and particle aggregation. Through simulations of bubble-particle collision probability and flotation experiments, we were able to find the ranges of bubble size and particle aggregate size that make fine particles float more effectively. This range provided the conditions for effective flotation of fine molybdenite particles. Therefore, we will implement the flotation conditions established in this study for fine molybdenum ore to improve the flotation process in molybdenum mineral processing plants in the future.

Coastal erosion and countermeasures of Oahu Island (오아후섬 연안 침식 현상과 대책)

  • Dong-Yoon Yang;Min Han
    • The Korean Journal of Quaternary Research
    • /
    • v.31 no.2
    • /
    • pp.31-42
    • /
    • 2017
  • Oahu Island is the third largest island of the Hawaiian chain which located in the northern hemisphere close to the center of the Pacific Ocean and is affected by storms and tsunamis in the northern and southern hemispheres. High-wave and high-energy waves are concentrated in the winter and summer, and the Oahu Coast is always in an active erosion environment. These natural effects are likely to become more severe with global warming and sea level rise. In addition, as the anthropogenic factors, there was indiscreet flood of development on the coast until the 1972 coastal management law was enacted. However, the present coastal erosion phenomenon was not serious than thought. The cause can be found in the improvement of the coastal management of the provincial government. The Hawaiian government is no longer applying this method, which was built prior to the enactment of the Coastal Control Act, due to increased erosion and side effects at other sites. So, in Hawaii, it is mainly applied to soft revetment methods such as supplying sand or making artificial sand dunes as an erosion prevention method. In Korea, there are some places where the soft revetment method is applied partially, but it is mainly composed of hard revetment structure.

Estimation of Addition and Removal Processes of Nutrients from Bottom Water in the Saemangeum Salt-Water Lake by Using Mixing Model (혼합모델을 이용한 새만금호 저층수 내 영양염의 공급과 제거에 관한 연구)

  • Jeong, Yong Hoon;Kim, Chang Shik;Yang, Jae Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.306-317
    • /
    • 2014
  • This study has been executed to understand the additional and removal processes of nutrients in the Saemangeum Salt-water Lake, and discussed with other monthly-collected environmental parameters such as water temperature, salinity, dissolved oxygen, suspended solids, and Chl-a from 2008 to 2010. $NO_3$-N, TP, $PO_4$-P, and DISi showed the removal processes along with the salinity gradients at the surface water of the lake, whereas $NO_2$-N, $NH_4$-N, and Chl-a showed addition trend. In the bottom water all water quality parameters except $NO_3$-N appeared addition processes indicating evidence of continuous nutrients suppliance into the bottom layer. The mixing modelling approach revealed that the biogeochemical processes in the lake consume $NO_3$-N and consequently added $NH_4$-N and $PO_4$-P to the bottom water during the summer seasons. The $NH_4$-N and $PO_4$-P appeared strong increase at the bottom water of the river-side of the lake and strong concentration gradient difference of dissolved oxygen also appeared in the same time. DISi exhibited continuous seasonal supply from spring to summer. Internal addition of $NH_4$-N and $PO_4$-P in the river-side of the lake were much higher than the dike-side, while the increase of DISi showed similar level both the dike and river sides. The temporal distribution of benthic flux for DISi indicates that addition of nutrients in the bottom water was strongly affected by other sources, for example, submarine ground-water discharge (SGD) through bottom sediment.

The Characteristic of Point Source Loads for Nitrogen and Phosphorus to Gwangyang Bay, Korea (광양만으로 유입되는 질소, 인의 점원 오염부하 특성)

  • Kim Do-Hee;Cho Hyeon-Seo;Lee Young Sik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • We estimated the loadings of nitrogen and phosphorus flowing into Gwangyang Bay front river for monthly interval from April to December of 2003. We analyzed the concentrations of nitrogen and phosphorus in water and estimated the flowing rates of fresh water in 34 rivers. The amounts of water flowing into the Gwdngyang Bay from Sum-Jin River was 51-76% in the total inflow of the river. The river water over 96% of discharge was from Sumjin River, Dong River, Ju-Kyo River, Seo River and Shinkyum River. The flowing patterns of nitrogen and phosphorus into Gwangyang Bay were similar to the flowing of river. The nitrogen and phosphorus loadings into the Bay were higher in July and August than in dry seasons. In particular, the concentrations of phosphorus were high in Namshu River, Deukyang River and Kilho River sewage during in dry seasons. The range of DIN and TN loadings from Sumjim River were 46-66% and 36-64%, respectively. The loading of DIP and TP from Sumjim River were 2-55% and 12-67%, respectively. These results show that the most efficient control of N. p flow into Gwangyang Bay is to restrain the inflows of N, p from Namshu River, Deukyang River and Kilho River and to restrain the flows of N, p from Dong River, Ju-Kyo River and industrial plant. The DIN/DIP atom ratio in river water was about 18 in July and August, while the ratio was more higher in dry seasons than July and August of rainy seasons. The TN/TP atom ratio in river water was about 7 in rainy seasons, while the ratios were higher than 100 in the other months of dry seasons.

  • PDF

Use of Numerical Simulation for Water Area Observation by Microwave Radar (마이크로웨이브 레이더를 이용한 수역관측에 있어서의 수치 시뮬레이션 이용)

  • Yoshida, Takero;Rheem, Chang-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.208-218
    • /
    • 2012
  • Numerical simulation technique has been developed to calculate microwave backscattering from water surface. The simulation plays a role of a substitute for experiments. Validation of the simulation was shown by comparing with experimental results. Water area observations by microwave radar have been simulated to evaluate algorithms and systems. Furthermore, the simulation can be used to understand microwave scattering mechanism on the water surface. The simulation has applied to the various methods for water area observations, and the utilizations of the simulation are introduced in this paper. In the case of fixed radar, we show following examples, 1. Radar image with a pulse Doppler radar, 2. Effect of microwave irradiation width and 3. River observation (Water level observation). In addition, another application (4.Synthetic aperture radar image) is also described. The details of the applications are as follows. 1. Radar image with a pulse Doppler radar: A new system for the sea surface observation is suggested by the simulation. A pulse Doppler radar is assumed to obtain radar images that display amplitude and frequency modulation of backscattered microwaves. The simulation results show that the radar images of the frequency modulation is useful to measure sea surface waves. 2. Effect of microwave irradiation width: It is reported (Rheem[2008]) that microwave irradiation width on the sea surface affects Doppler spectra measured by a CW (Continuous wave) Doppler radar. Therefore the relation between the microwave irradiation width and the Doppler spectra is evaluated numerically. We have shown the suitable condition for wave height estimation by a Doppler radar. 3. River observation (Water level observation): We have also evaluated algorithms to estimate water current and water level of river. The same algorithms to estimate sea surface current and sea surface level are applied to the river observation. The simulation is conducted to confirm the accuracy of the river observation by using a pulse Doppler radar. 4. Synthetic aperture radar (SAR) image: SAR images are helpful to observe the global sea surface. However, imaging mechanisms are complicated and validation of analytical algorithms by SAR images is quite difficult. In order to deal with the problems, SAR images in oceanic scenes are simulated.