• Title/Summary/Keyword: Ocean circulation

Search Result 515, Processing Time 0.033 seconds

The Annual Variation of Surface Circulation in the South China Sea

  • Jeon, Dongchull
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.13-15
    • /
    • 1995
  • The horizontal and vertical circulations are considered in the South China Sea, based on the 80 years' winds (COADS), 10 years' XBTs (NODC), and about 10 years' sea-level data at Kaoshiung, Taiwan and Singapore. The South China is largest marginal sea in the western North Pacific, which is predominantly governed by Southeast Asian Monsoons. (omitted)

  • PDF

Dispersion-Correction of ADCIRC Finite Element Model for the Simulation of Tsunami Propagation (지진해일 전파 모의를 위한 ADCIRC 유한요소모형의 분산보정)

  • 윤성범;임채호;윤기승;최병호
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.287-293
    • /
    • 2002
  • 조석을 수치모의하기 위해 North carolina 대학의 R.A. Luettich와 Notre Dame 대학의 J.J. Westerink가 개발한 ADvanced CIRCulation model for oceanic, coastal and estuarine waters(ADCIRC) 유한요소모형 (Luettich, et al., 1992)은 수심 적분된 2 차원 모형(2DDI)과 3차원 모형(3DL)으로 구성되어 있는데, 그 중 2차원 ADCIRC 유한요소모형은 천수방정식에서 연속방정식과 운동방정식을 합성하여 수면변위에 대해 하나의 식으로 표현한 파동방정식(wave equation)을 지배방정식으로 사용하고 있다. (중략)

  • PDF

On Tidal Energy Horizontal Circulation

  • Nekrasov, A.V.
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1992.08a
    • /
    • pp.69-71
    • /
    • 1992
  • The local horizintal flux of tidal energy is characterized by the surface density $\omega$ = $\rho$ g h ζ u ($\rho$ - sea water density, g - gravitation, h - depth, ζ - tidal surface elevation, u - vertically averaged tidal current velocity vector). In general the flux vector $\omega$ comprises active and reactive components whose relation determines the local structure of a tidal wave.(omitted)

  • PDF

A three dimensional numerical model of tide and tidal current in the bay of Cheonsu in Korea

  • Moon Seup Shin;Tet
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1998.05a
    • /
    • pp.632-637
    • /
    • 1998
  • The purpose of this study of this study is to find tide and tidal current variation by three dimensional numerical model of tide and tidal current in the bay of Cheonsu in Korea. On the basis of the observed data on water temperature and salinity data and wind data of summer(July) in the bay of Cheonsu in Korea, water circulation in the bay of Cheonsu is investigated with use of a robust diagnostic numerical model, including calculated co-range and co-tidal charts of M2 tide are similar to the observed ones. The residual flow Pattern at the surface layer during summer formed clockwise circulation in the front coastal the dike of the Sosam A zone(Ganwor island) and Taeju island. The residual flow pattern at the 15m layer during formed clockwise circulation in the front Taeju island. The residual flow Pattern at the surface layer formed anti-clockwise circulation in the upper Sangmok and Naepasu island.

  • PDF

A Mechanism of AMOC Decadal Variability in the HadGEM2-AO (HadGEM2-AO 모델이 모의한 AMOC 수십 년 변동 메커니즘)

  • Wie, Jieun;Kim, Ki-Young;Lee, Johan;Boo, Kyung-on;Cho, Chunho;Kim, Chulhee;Moon, Byung-kwon
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.199-209
    • /
    • 2015
  • The Atlantic meridional overturning circulation (AMOC), driven by high density water sinking around Greenland serves as a global climate regulator, because it transports heat and materials in the climate system. We analyzed the mechanism of AMOC on a decadal time scale simulated with the HadGEM2-AO model. The lead-lag regression analysis with AMOC index shows that the decadal variability of the thermohaline circulation in the Atlantic Ocean can be considered as a self-sustained variability. This means that the long-term change of AMOC is related to the instability which is originated from the phase difference between the meridional temperature gradient and the ocean circulation. When the overturning circulation becomes stronger, the heat moves northward and decreases the horizontal temperature-dominated density gradients. Subsequently, this leads to weakening of the circulation, which in turn generates the anomalous cooling at high latitudes and, thereby strengthening the AMOC. In this mechanism, the density anomalies at high latitudes are controlled by the thermal advection from low latitudes, meaning that the variation of the AMOC is thermally driven and not salinity driven.

Hull form development of the high speed small fishing boat (고속 소형 어선의 기본선행 개발)

  • Lee, Kwi-Joo;Joa, Soon-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.68-74
    • /
    • 2008
  • This study is concerned with the development of the basic planing hull form of small fishing boat in 25 knots high speed. A series of model test to determine the optimum performance hull form of actual fishing boat with 10 gross tonnage was carried out for 5 models made available planing hull form in the circulation water channel. Model test was performed with the resistance test to study the hydrodynamic characteristics of model ships and the sinkage and trim measurement to investigate the stability of model ships and also the wave pattern observation to analyze the effectiveness of model ships. As the result, the planing hull form of P-4 with deep V type bow can be derived as the best hull form with good performance especially in ship's resistance efficiency showing less residual resistance and sinkage and trim and the spray effect, etc..

Study on Development of Surge-Tide-Wave Coupling Numerical Model for Storm Surge Prediction (해일-조석-파랑을 결합한 폭풍해일 수치모델 개발에 관한 연구)

  • Park, Jong-Kil;Kim, Myung-Kyu;Kim, Dong-Cheol;Yoon, Jong-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.33-44
    • /
    • 2013
  • IIn this study, a wave-surge-tide coupling numerical model was developed to consider nonlinear interaction. Then, this model was applied and calculations were made for a storm surge on the southeast coast. The southeast coast was damaged by typhoon "Maemi" in 2003. In this study, we used a nearshore wind wave model called SWAN (Simulating WAves Nearshore). In addition, the Meyer model was used for the typhoon model, along with an ocean circulation model called POM (Princeton Ocean Model). The wave-surge-tide coupling numerical model could calculate exact parameters when each model was changed to consider the nonlinear interaction.

Biophysical Effects Simulated by an Ocean General Circulation Model Coupled with a Biogeochemical Model in the Tropical Pacific

  • Park, Hyo-Jin;Moon, Byung-Kwon;Wie, Jieun;Kim, Ki-Young;Lee, Johan;Byun, Young-Hwa
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.469-480
    • /
    • 2017
  • Controversy has surrounded the potential impacts of phytoplankton on the tropical climate, since climate models produce diverse behaviors in terms of the equatorial mean state and El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) amplitude. We explored biophysical impacts on the tropical ocean temperature using an ocean general circulation model coupled to a biogeochemistry model in which chlorophyll can modify solar attenuation and in turn feed back to ocean physics. Compared with a control model run excluding biophysical processes, our model with biogeochemistry showed that subsurface chlorophyll concentrations led to an increase in sea surface temperature (particularly in the western Pacific) via horizontal accumulation of heat contents. In the central Pacific, however, a mild cold anomaly appeared, accompanying the strengthened westward currents. The magnitude and skewness of ENSO were also modulated by biophysical feedbacks resulting from the chlorophyll affecting El $Ni{\tilde{n}}o$ and La $Ni{\tilde{n}}a$ in an asymmetric way. That is, El $Ni{\tilde{n}}o$ conditions were intensified by the higher contribution of the second baroclinic mode to sea surface temperature anomalies, whereas La $Ni{\tilde{n}}a$ conditions were slightly weakened by the absorption of shortwave radiation by phytoplankton. In our model experiments, the intensification of El $Ni{\tilde{n}}o$ was more dominant than the dampening of La $Ni{\tilde{n}}a$, resulting in the amplification of ENSO and higher skewness.

Impact of Climate Change on the Ocean Environment in the Viewpoint of Paleoclimatology (기후변화가 해양에 미친 영향: 고기후학의 관점에서)

  • Yi, Hi-Il;Shin, Im Chul
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.379-386
    • /
    • 2010
  • Impact of global warming on the ocean environment is reviewed based on most recently published publications. The most significant impact of global warming on marine environment is due to the melting of mountain and continental glaciers. Ice melting causes slow down and/or shut down of thermohaline circulation, and makes hypoxic environment for the first time, then makes anoxic with time. This can cause decreasing biodiversity, and finally makes global extinction of animals and plants. Furthermore, global warming causes sea-level rise, soil erosion and changes in calcium carbonate compensation depth (CCD). These changes also can make marine ecosystem unstable. If we emit carbon dioxide at a current rate, the global mean temperature will rise at least $6^{\circ}C$ at the end of this century, as predicted by IPCC (Intergovernmental Panel on Climate Change). In this case, the ocean waters become acidic and anoxic, and the thermohaline circulation will be halted, and marine ecosystems collapsed.

Coastal Circulation and Bottom Change due to Ocean Resort Complex Development

  • Kim, Pill-Sung;Lee, Joong-Woo;Kim, Jeong-Seok
    • Journal of Navigation and Port Research
    • /
    • v.36 no.7
    • /
    • pp.585-590
    • /
    • 2012
  • On the basis of the potentials for the growth of local economy and the result of investigation of the ocean space development status, an ocean resort complex was proposed at the small harbor with a parallel beach in the east coast of Korea. As the development plan needs to reclaim the noticeable amount of coastal water area together with the applied shore facilities, it is necessary to analyze their impacts. Here, it was intended to analyze the coastal environment change such as water circulation and bottom change because of the development plan. A horizontal two-dimensional numerical model was applied to represent the combined impact of wind waves and tidal currents to sediment transport in that coastal region. Based on the result of 30 days tidal current simulations considering major four tidal components of $M_2$,$S_2$,$K_1$ and $O_1$ for the upper and lower boundaries and wind field data, bottom change was discussed. Flow velocities were not changed much at outer breakwater of Yangpo harbor. Bottom was eroded by maximum 1.7m after construction but some locations such as lee side of outer breakwater and some islets near the entrance shows isolated accretions. Although it needs more field observations for bottom change in the period of construction, the numerical calculation shows that there exist small impacts near the entrance area and coastal boundaries because of the development.