Browse > Article
http://dx.doi.org/10.5467/JKESS.2015.36.3.199

A Mechanism of AMOC Decadal Variability in the HadGEM2-AO  

Wie, Jieun (Division of Science Education/Institute of Fusion Science, Chonbuk National University)
Kim, Ki-Young (4D Solution Co., LTD.)
Lee, Johan (National Institute of Meteorological Research)
Boo, Kyung-on (National Institute of Meteorological Research)
Cho, Chunho (National Institute of Meteorological Research)
Kim, Chulhee (Division of Science Education/Institute of Fusion Science, Chonbuk National University)
Moon, Byung-kwon (Division of Science Education/Institute of Fusion Science, Chonbuk National University)
Publication Information
Journal of the Korean earth science society / v.36, no.3, 2015 , pp. 199-209 More about this Journal
Abstract
The Atlantic meridional overturning circulation (AMOC), driven by high density water sinking around Greenland serves as a global climate regulator, because it transports heat and materials in the climate system. We analyzed the mechanism of AMOC on a decadal time scale simulated with the HadGEM2-AO model. The lead-lag regression analysis with AMOC index shows that the decadal variability of the thermohaline circulation in the Atlantic Ocean can be considered as a self-sustained variability. This means that the long-term change of AMOC is related to the instability which is originated from the phase difference between the meridional temperature gradient and the ocean circulation. When the overturning circulation becomes stronger, the heat moves northward and decreases the horizontal temperature-dominated density gradients. Subsequently, this leads to weakening of the circulation, which in turn generates the anomalous cooling at high latitudes and, thereby strengthening the AMOC. In this mechanism, the density anomalies at high latitudes are controlled by the thermal advection from low latitudes, meaning that the variation of the AMOC is thermally driven and not salinity driven.
Keywords
Atlantic meridional overturning circulation (AMOC); decadal variability; self-sustained variability; thermally driven;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Allison, L., Hawkins, E., and Woollings, T., 2015, An event-based approach to understanding decadal fluctuations in the Atlantic meridional overturning circulation. Climate Dynamics, 44, 163-190, doi: 10.1007/s00382-014-2271-9.   DOI
2 Ba, J., Keenlyside, N.S., Park, W., Latif, M., Hawkins, E., and Ding, H., 2013, A mechanism for Atlantic multidecadal variability in the Kiel Climate Model. Climate Dynamics, 41, 2133-2144, doi: 10.1007/s00382-012-1633-4.   DOI
3 Baek, H.-J., Lee, J., Lee, H.-S., Hyun, Y.-K., Cho, C., Kwon, W.-T., Marzin, C., Gan, S.-Y., Kim, M.-J., Cho, D.-H., Lee, J., Lee, J., Boo, K.-O., Kang, H.-S., and Byun, Y.-H., 2013, Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pacific Journal of Atmospheric Science, 49, 603-618, doi: 10.1007/s131043-013-0053-7.   DOI
4 Carlson, A.E., 2010, What caused the Younger Dryas cold event? Geology, 38, 383-384, doi: 10.1130/focus042010.1.   DOI
5 Cheng, W., Bleck, R., and Rooth, C., 2004, Multi-decadal thermohaline variability in an ocean-atmosphere general circulation model. Climate Dynamics, 22, 573-590, doi: 10.1007/s00382-004-0400-6.   DOI
6 Cheng, W., Chiang, J.C.H., and Zhang, D.X., 2013, Atlantic meridional overturning circulation (AMOC) in CMIP5 Models: RCP and historical simulations. Journal of Climate, 26, 7187-7197, doi: 10.1175/JCLI-D-12-00496.1.   DOI
7 Clark, P.U., Pisias, N.G., Stocker, T.F., and Weaver, A.J., 2002, The role of the thermohaline circulation in abrupt climate change. Nature, 415, 863-869, doi: 10.1038/415863a.   DOI
8 Cunningham, S.A., Kanzow, T., Rayner, D., Baringer, M.O., Johns, W.E., Marotzke, J., Longworth, H.R., Grant, E.M., Hirschi, J.J., Beal, L.M., Meinen, C.S., and Bryden, H.L., 2007, Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees N. Science, 317, 935-938.   DOI
9 Dahl, K.A., Broccoli, A.J., and Stouffer, R., 2005, Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: A tropical Atlantic perspective. Climate Dynamics, 24, 325-346, doi: 10.1007/s00382-004-0499-5.   DOI
10 Delworth, T.L., Manabe, S., and Stouffer, R.J., 1993, Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. Journal of Climate, 6, 1993-2011.   DOI
11 Delworth, T.L., Manabe, S., and Stouffer, R.J. 1997, Multidecadal climate variability in the Greenland Sea and surrounding regions: A coupled model simulation. Geophysical Research Letters, 24, 257-260.   DOI
12 Dong, B. and Sutton, R.T., 2005, Mechanism of interdecadal thermohaline circulation variability in a coupled ocean-atmosphere GCM. Journal of Climate, 18, 1117-1135.   DOI
13 Delworth, T.L. and Greatbatch, R.J., 2000, Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. Journal of Climate, 13, 1481-1495.   DOI
14 Delworth, T.L. and Mann, M.E., 2000, Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dynamics, 16, 661-676.   DOI
15 Delworth, T.L., Zhang, R., and Mann, M.E., 2007, Decadal to Centennial Variability of the Atlantic from Observations and Models. Schmittner, A., Chiang, J.C.H., and Hemming, S.R. (eds.), Ocean Circulation: Mechanisms and Impacts-Past and Future Changes of Meridional Overturning, American Geophysical Union, Washington, D.C., USA, doi: 10.1029/173GM10, 131-148.
16 Duplessy, J., Labeyrie, L., Arnold, M., Paterne, M., Duprat, J., and Weering, T.V., 1992, North Atlantic sea surface salinity and abrupt climate changes. Nature, 358, 485-488.   DOI
17 Ganachaud, A. and Wunsch, C., 2000, Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453-457.   DOI
18 Greatbatch, R.J. and Zhang, S., 1995, An interdecadal oscillation in an ocean basin forced by constant heat flux. Journal of Climate, 8, 81-91.   DOI
19 Griffies, S.M. and Bryan, K., 1997, Predictability of North Atlantic multidecadal climate variability. Science, 275, 181-184.   DOI
20 Haywood, J.M., Stouffer, R.J., Wetherald, R.T., Manabe, S., and Ramaswamy, V., 1997, Transient response of a coupled model to estimated changes in greenhouse gas and sulfate concentrations. Geophysical Research Letters, 24, 1335-1338.   DOI
21 Jackson, L.C., 2013, Shutdown and recovery of the AMOC in a coupled global climate model: the role of advective feedback. Geophysical Research Letters, 40, 1182-1188, doi: 10.1002/grl.50289.   DOI
22 Held, I.M., 2013, The cause of the pause. Nature, 501, 318-319.   DOI
23 IPCC, 1996, Climate Change 1995. Houghton, JT, Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A., and Maskell, K. (eds.). The IPCC second scientific assessment. Cambridge University Press, Cambridge, UK, 572 p.
24 IPCC, 2013, Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 1552 p.
25 Johns, W.E., Baringer, M.O., Beal, L.M., Cunningham, S.A., Kanzow, T., Bryden, H.L., Hirschi, J.J.M., Marotzke, J., Meinen, C.S., Shaw, B., and Curry, R., 2011, Continuous, array-based estimates of Atlantic Ocean heat transport at $26.5^{\circ}N$. Journal of Climate, 24, 2429-2449, doi: 10.1175/2010JCLI3997.1.   DOI
26 Kerr, R., 2000, A North Atlantic climate pacemaker for the centuries. Science, 288, 1984-1985, doi:10.1126/science.288.5473.   DOI
27 Knight, J., Allan, R., Folland, C., Vellinga, M., and Mann, M., 2005, A signature of persistent natural thermohaline circulation cycles in observed climate. Geophysical Research Letters, 32, 2-5, doi:10.1029/2005GL024233.   DOI
28 Lavin, A., Bryden, H.L., and Parilla, G., 1998, Meridional transport and heat flux variations in the subtropical North Atlantic. The Global Atmosphere and Ocean System, 6, 269-293.
29 Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M., and Rahmstorf. S., 2007, On the driving processes of the Atlantic meridional overturning circulation, Reviews of Geophysics. 45, RG2001, doi: 10.1029/2004RG000166.   DOI
30 Kwon, Y.O. and Frankignoul, C., 2014, Mechanisms of multidecadal Atlantic meridional overturning circulation variability diagnosed in depth versus density space. Journal of Climate, 27, 9359-9376.   DOI
31 Macdonald, A.M. and Wunsch, C., 1996, An estimate of global ocean circulation and heat fluxes. Nature, 382, 436-439.   DOI
32 Mahajan, S., Zhang, R., and Delworth, T.L., 2011, Impact of the Atlantic meridional overturning circulation (AMOC) on Artic surface air temperature and sea ice variability. Journal of Climate, 24, 6573-6581, doi: 10.1175/2011JCLI4002.1.   DOI
33 Manabe, S. and Stouffer, R.J., 1994, Multiple-century response of a coupled ocean-atmosphere model to an increase of carbon dioxide. Journal of Climate, 7, 5-23.   DOI
34 Marshall, J. and Speer, K., 2012, Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geoscience, 5, 171-180, doi: 10.1038/ngeo1391.   DOI
35 Matsumoto, K. and Yokoyama, Y., 2013, Atmospheric ${\Delta}^{14}C$ reduction in simulations of Atlantic overturning circulation shutdown. Global Biogeochemical Cycles, 27, 296-304, doi:10.1002/gbc.20035.   DOI
36 Mignot, J., Ganopolski, A., and Levermann, A., 2007, Atlantic subsurface temperatures: response to a shutdown of the overturning circulation and consequences for its recovery. Journal of Climate, 20, 4884-4898, doi: 10.1175/JCLI4280.1.   DOI
37 Mayewski, P.A., Meeker, L.D., Whitlow, S., Twickler, M.S., Morrison, M.C., Alley, R.B., Bloomfield, P., and Taylor, K. 1993, The atmosphere during the Younger Dryas. Science, 261, 195-197.   DOI
38 McCarthy, G., Frajka-Williams, E., Johns, W.E., Baringer, M.O., Meinen, C.S., Bryden, H.L., Rayner, D., Duchez, A., Roberts, C., and Cunningham, S.A., 2012, Observed interannual variability of the Atlantic meridional overturning circulation at $26.5^{\circ}N$. Geophysical Research Letters, 39, 1-15, doi :10.1029/2012GL052933.   DOI
39 McManus, J.F., Francois, R., Gherardi, J.M., Keigwin, L.D., and Brown-Leger, S., 2004, Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 834-837.   DOI
40 Mikolajewicz, U. and Maier-Reimer, E., 1990, Internal secular variability in an ocean general circulation model. Climate Dynamics, 4, 145-156.   DOI
41 Park, Y.-G., 2005, Climate change and the thermohaline circulation of the oceans. Journal of Atmosphere, KMS, 15, 69-74. (in Korean)
42 Rahmstorf, S., 2002, Ocean circulation and climate during the past 120,000 years. Nature, 419, 207-214.   DOI
43 Rahmstorf, S., 2006, Thermohaline ocean circulation. Elias, S.A. (eds). Encyclopedia of Quaternary Sciences, Elsevier, Amsterdam.
44 Rahmstorf, S., Box, J., Feulner, G., Mann, M., Robinson, A., Rutherford, S., and Schaffernicht, E., 2015, Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 5, 475-480.   DOI
45 Swingedouw, D., Braconnot, P., and Marti, O., 2006, Sensitivity of the Atlantic meridional overturning circulation to the melting from northern glaciers in climate change experiments. Geophysical Research Letters, 33, L07711, doi:10.1029/2006GL025765.   DOI
46 Rayner, D., Hirschi, J.J.-M., Kanzow, T., Johns, W.E., Wright, P.G., Frajka-Williams, E,, Bryden, H.L., Meinen, C.S., Baringer, M.O., Marotzke, J., Beal, L.M., and Cunningham, S.A. 2011, Monitoring the Atlantic meridional overturning circulation. Deep-Sea Research, 58, 1744-1753.   DOI
47 Schlesinger, M.E. and Ramankutty, N., 1994, An oscillation in the global climate system of period 65-70 years. Nature, 367, 723-726, doi: 10.1038/367723a0.   DOI
48 Stocker, T.F., 1998, Climate change-The seesaw effect. Science, 282, 61-62, doi: 10.1126/science.282.5386.61.   DOI
49 Te Raa, L.A. and Dijkstra, H.A., 2002, Instability of the thermohaline ocean circulation on interdecadal timescales. Journal of Physical Oceanography, 32, 138-160, doi: 10.1175/1520-0485(2002)032<0138:IOTTOC> 2.0.CO;2.   DOI
50 Thornalley, D.J.R., Barker, S., Broecker, W.S., Elderfield, H., and McCave, I.N., 2011, The Deglacial Evolution of North Atlantic Deep Convection. Science, 331, 202-205, doi: 10.1126/science.1196812.   DOI
51 Timmermann, A., Latif, M., Voss, R., and Grotzner, A., 1998, Northern Hemispheric intercdecadal variability: a coupled air-sea mode. Journal of Climate, 11, 1906-1931, doi: 10.1175/1520-0442-11.8.1906.   DOI
52 Trenberth, K.E. and Caron, J.M., 2001, Estimates of meridional atmosphere and ocean heat transports. Journal of Climate, 14, 3433-3443.   DOI
53 Wie, J., Moon, B.-K., Kim, K.-Y., and Lee, J., 2014, The global warming hiatus simulated in HadGEM2-AO Based on RCP8.5. Journal of Korean Earth Science Society, 35, 249-258, doi: 10.5467/JKESS.2014.35.4.249. (in Korean)   DOI
54 Vellinga, M. and Wood, R.A., 2002, Global climate impacts of a collapse of the Atlantic thermohaline circulation. Climate Change, 54, 251-267. doi: 10.1023/A:1016168827653.   DOI
55 Weaver, A.J., Sarachik, E.S., and Marotze, J., 1991, Freshwater flux forcing of decadal and interdecadal oceanic variability. Nature, 353, 836-838, doi: 10.1038/353836a0.   DOI
56 Weaver, A.J. and Valcke, S., 1998, On the variavility of the thermohaline circulation in the GFDL coupled model. Journal of Climate, 11, 759-767.   DOI
57 Wood, R.A., Keen, A.B., Mitchell, J.F.B., and Gregory, J.M., 1999, Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature, 399, 572-575, doi: 10.1038/21170.   DOI
58 Wouters, B., Drijfhout, S., and Hazeleger, W., 2012, Interdecadal North-Atlantic meridional overturning circulation variability in EC-EARTH. Climate Dynamics, 39, 2695-2712.   DOI
59 Zhang, R. and Delworth, T.L., 2005, Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. Journal of Climate, 18, 1853-1860.   DOI
60 Zhu, X.H. and Jungclaus, J., 2008, Interdecadal variability of the meridional overturning circulation as an ocean internal mode. Climate Dynamics, 31, 731-741.   DOI