• Title/Summary/Keyword: Ocean buoy

Search Result 298, Processing Time 0.024 seconds

Comparison of Weather and Wave Data from Ocean Observation Buoys on the Southwestern Coast of Korea during Typhoon Muifa (태풍 무이파 내습시 서남해안 해양관측부이 기상파랑자료 비교 연구)

  • Yoon, Han-Sam;Kwon, Jun-Hyeok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.170-176
    • /
    • 2012
  • This paper analyzes the sea state and characteristics during the August 2011 passage of Typhoon Muifa based on data measured at four ocean weather/wave observation stations (buoys) located on the southwestern coast of Korea. When the typhoon arrived in the area approximately 230 km west of Mokpo at 9 PM on August 7, the decrease in air pressure led to increases in sea level of 25.64 cm at the Chilbal-do buoy, 16.43 cm at the Geomun-do buoy, and 9.60 cm at the Geoje-do buoy. The maximum wave height increased at the Geomun-do buoy about seven times faster than at the Chilbal-do buoy. The low water temperature at Chilbaldo during the typhoon passage probably reduced the wave energy. In the face of the oncoming typhoon, the southwest direction of the wind and waves may have been the result of external forces transporting seawater (energy) from the open sea toward the coast. The weather and ocean data from the Mara-do buoy were negatively correlated with those of Chilbal-do, whereas the data from Geomun-do had a positive correlation with those of Geoje-do.

Effect of the characteristics of buoy on the holding power of trapnet (부이의 특성이 통발어구의 고정력에 미치는 영향)

  • LEE, Gun-Ho;CHO, Sam-Kwang;KIM, In-Ok;CHA, Bong-Jin;JUNG, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.309-316
    • /
    • 2017
  • In this paper, numerical modeling is conducted to analyze the tension of an anchor line by varying the size and drag coefficient of a buoy when the trapnet is influenced by the wave and the current simultaneously. A mass-spring model was used to analyze the behavior of trapnet underwater under the influence of waves and current. In the simulation of numerical model, wave height of 3, 4, 5 and 6 m, a period of 4.4 s, and the flow speed of 0.7 m/s were used for the wave and current condition. The drag coefficients of buoy were 0.8, 0.4 and 0.2, respectively. The size of buoy was 100, 50 and 25% based on the cylindrical buoy ($0.0311m^3$) used for swimming crab trap. The drag coefficient of the trapnet, the main model for numerical analysis, was obtained by a circular water channel experiment using a 6-component load cell. As a result of the simulation, the tension of the anchor line decreased proportional to buoy's drag coefficient and size; the higher the wave height, the greater the decrease rate of the tension. When the buoy drag coefficient and size decreased to one fourth, the tension of the anchor line decreased to a half and the tension of the anchor line was lower than the holding power of the anchor even at 6 m of wave height. Therefore, reducing the buoy drag coefficient and size appropriately reduces the trapnet load from the wave, which also reduces the possibility of trapnet loss.

Implementation of a Buoy System Based on Multi-Hop Relay Networks for Ocean Observation (해양관측을 위한 다중 홉 릴레이 네트워크 기반의 부이 시스템 구현)

  • Lee, Woon-hyun;Kwon, Hyuk-Jin;Kim, Si-moon;Jeong, SeongHoon;Kim, Jeongchang
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.182-189
    • /
    • 2016
  • In this paper, we propose a buoy system based on multi-hop relay networks for ocean observation. The proposed system consists of various sensor modules, a gateway, wireless communication modules, and a remote monitoring site. The sensor modules are integrated with various communication interfaces and connected to the gateway of the proposed buoy system with an unified protocol based on controller area network (CAN)-bus. In order to communicate with the remote monitoring site and extend the coverage, the proposed system uses long-term evolution (LTE) router and XBee mesh network modules. The field test results show that the proposed system can extend the coverage using the proposed multi-hop relay network.

Development of the Prototype of Wave Energy Converter by a Pulley System (도르래를 이용한 파력발전기 프로토 타입 개발에 관한 연구)

  • Jung, Hyun-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.133-139
    • /
    • 2010
  • From the ancient times, there are waves in the ocean. And all the moving body have energy. We have a kind of hope to convert the wave energy into electric one. Finally we can find out a power generator mechanism that mainly use the principle of pulleys. We have made drawings for this and completed the wave energy converter. This wave energy converter consists of several pulleys, rope, generator, buoys and anchors. The distance between an anchor and buoy is changed according to the hight of waves. Several sets of anchors, pulleys and buoys can make the movement of rope, and the ropes wind up a converter axis. In case of 1 meter movement of the buoy, the winding distance will be amplified 2 or 3 times if we use several moving and fixed pulleys. Based on this concept, we developed 2 kind of prototypes. One is for the test in the laboratory and the other is for the field test. Through the two test, we could confirm the usability of this mechanism.

Feasibility study for wrap-buoy assisted wet-tow and stepwise installation of mono-bucket foundation for 15 MW offshore wind turbine

  • Ikjae, Lee;Moohyun, Kim
    • Ocean Systems Engineering
    • /
    • v.12 no.4
    • /
    • pp.413-437
    • /
    • 2022
  • An innovative concept for wet-transportation and stepwise installation of mono-bucket foundation for 15 MW offshore wind turbine is proposed. Case studies for two different mono-bucket and wrap-buoy dimensions are conducted and their hydrostatic and hydrodynamic performances are compared for both wet-towing and lowering operations. The intact stability and transient responses are analyzed in detail for various stages of lowering operation. Wave-induced motion statistics during wet tow in sea state 4 (highest operational window) are checked. The proposed concept is found to be feasible and can be an alternative cost-effective solution without using heavy-lift crane vessel in practice.

A Study on the Development of TGPS Buoy for the Ocean Surface Current Measurement (표층해류 관측을 위한 TGPS Buoy 개발 연구)

  • 전호경;함석현
    • 한국해양학회지
    • /
    • v.30 no.1
    • /
    • pp.27-38
    • /
    • 1995
  • For the study of oceanic surface current, this work presents a system design which is composed of three parts, a Global Positiong System(GPS) unit, a transmitter with radio frequency (RF) modem and an antenna which are housed in a plastic spherical buoy, and computerised of VHF receiving system. The key idea for this study is to employ a commercially available GPS on a drifting buoy and to utilize the receiver position information from the buoy in determining the Lagrangian motion of surface ocean waters. Great efforts has been paid to the system design which would demand several points in harsh conditions common in the sea surface, that is power supply problems housed inside of a plastic buoy, optimizing transmitting radio frequency which limits transmitting distance to a receiving station. for all these difficulties, the system appears to be promising in future oceanic applications and is considered to economical compared to ARGOS drift buoy which is being used by commercial base. We believe that the system needs to be improved in terms of several aspects such as a longer transmitting distance, a power supply and software. for the test experiments in situ, the system has employed off the coast of Ku Ryong Po int the southeast part of Korea and successfully collected the surface current data. The results are presented for two cases from 21 to 31, March 1994 and 21 to 25, June 1994 in terms of current statistics and trajectories of drifting buoys.

  • PDF

Effect of flagpole attached to buoy on tension of buoy rope of gillnet (자망어구 부이의 깃대가 부이줄 장력에 미치는 영향)

  • CHO, Sam-Kwang;LEE, Gun-Ho;CHA, Bong-Jin;JUNG, Seong-Jae;KIM, In-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.4
    • /
    • pp.290-298
    • /
    • 2016
  • This study aims to reduce the force exerted to the buoy of the gillnet by wave and current. Five buoy models were selected for experiments and their rope tensions under wave and current action were compared. Five models were EL (ellipsoid), EL-H (ellipsoid-hole), SL (streamlined body), SP (sphere) and CL (cylinder, traditional type). In the first experiment, the Five models were tested without any attachment. In the second experiment, a flagpole was attached to each model. As a result, in the condition without flagpole, the tensions of four models with the exception of the CL were about a half of that of the CL. In the condition with flagpole, the tension of all models was twice larger than that without flagpole. Thus, a new model was suggested to improve the problem, which has a combined body that of a flagpole and a buoy Three new models of CL-L (long and thin cylinder), LF (leaf shape) and LF-F (leaf shape with fin) were designed. Also a cylinder type (CLD) with a flagpole as a control was included in the experiment. As a result, the LF-F had the smallest tension and a half tension of the CLD. Therefore, it is supposed that the flagpole and buoy combined model could reduce the tension on buoy rope and contribute to improve the gillnet loss problem.

Movement Monitoring System for Marine Buoy (해상 브이용 움직임 감시 시스템)

  • Oh, Jin Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.311-317
    • /
    • 2014
  • Buoy has different motion characteristics depends on the sea weather situations. The motion characteristics has an impact on antenna, solar power generation system and etc. installed within a buoy. Therefore, it is important to analyse motion characteristics for management and analyse the buoy conditions. This paper's Buoy motion monitoring system uses gyro sensor to detect motions of a light buoy, and the measured data transfers to the PC on the shore using signal processing algorithm. The aim of this research is to develop monitoring and management mechanism of a buoy by applying motion monitoring system. In this paper, the operation characteristic of movement monitoring system is verified through experiment. Further, in this paper, it can apply such as real-time visibility into the status of the buoy or many ocean facility's motion estimation of the future.

A Study on the Separated Position of Floating Light Buoy Equipment with AtoN AIS and RTU (항로표지용 AIS 및 RTU가 부착된 부유식 등부표의 이출위치 연구)

  • Moon, Beom-Sik;Yoo, Yun-Ja;Kim, Min-Ji;Kim, Tae-Goun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.313-320
    • /
    • 2022
  • The light buoy installed on the sea is always flexible, because it is affected by the weather as well as passing vessels. The position of the light buoy can be cached through the AtoN AIS (Automatic Identification System) and RTU (Remote Terminal Unit). This study analyzed the position data of the light buoys for the last five years (2017-2021), as well as the distribution of the light buoys within the maximum separated position. As a result, there was a basic error of 17.9% in the position data. Additionally, the separated position error of 197 light buoys to be analyzed was 70.64%, and the AtoN RTU was worse than the AtoN AIS by equipment. On the other hand, as a result of the plotting the position data of the light buoy, it was classified into four types. The most common percussion center type, the percussion center dichotomous type in which the position is divided into two zones based on the chimney, the central movement type with a fluctuating center, and the drag type, in which the position is deviated from the center for a certain period. Except for Type-1, the type was determined according to the position at which the light buoy was installed. This study is the first to analyze the position data of the light buoy, and it is expected that it will contribute to the improvement of the quality of the position data of the light buoy.

Research on Wind Waves Characteristics by Comparison of Regional Wind Wave Prediction System and Ocean Buoy Data (지역 파랑 예측시스템과 해양기상 부이의 파랑 특성 비교 연구)

  • You, Sung-Hyup;Park, Jong-Suk
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.7-15
    • /
    • 2010
  • Analyses of wind wave characteristics near the Korean marginal seas were performed in 2008 and 2009 by comparisons of an operational wind wave forecast model and ocean buoy data. In order to evaluate the model performance, its results were compared with the observed data from an ocean buoy. The model used in this study was very good at predicting the characteristics of wind waves near the Korean Peninsula, with correlation coefficients between the model and observations of over 0.8. The averaged Root Mean Square Error (RMSE) for 48 hrs of forecasting between the modeled and observed waves and storm surges/tide were 0.540 m and 0.609 m in 2008 and 2009, respectively. In the spatial and seasonal analysis of wind waves, long waves were found in July and September at the southern coast of Korea in 2008, while in 2009 long waves were found in the winter season at the eastern coast of Korea. Simulated significant wave heights showed evident variations caused by Typhoons in the summer season. When Typhoons Kalmaegi and Morakot in 2008 and 2009 approached to Korean Peninsula, the accuracy of the model predictions was good compared to the annual mean value.