• Title/Summary/Keyword: Ocean Wave

Search Result 3,105, Processing Time 0.028 seconds

Performance Analysis of Multiple Wave Energy Converters due to Rotor Spacing

  • Poguluri, Sunny Kumar;Kim, Dongeun;Ko, Haeng Sik;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.229-237
    • /
    • 2021
  • A numerical hydrodynamic performance analysis of the pitch-type multibody wave energy converter (WEC) is carried out based on both linear potential flow theory and computational fluid dynamics (CFD) in the unidirectional wave condition. In the present study, Salter's duck (rotor) is chosen for the analysis. The basic concept of the WEC rotor, which nods when the pressure-induced motions are in phase, is that it converts the kinetic and potential energies of the wave into rotational mechanical energy with the proper power-take-off system. This energy is converted to useful electric energy. The analysis is carried out using three WEC rotors. A multibody analysis using linear potential flow theory is performed using WAMIT (three-dimensional diffraction/radiation potential analysis program), and a CFD analysis is performed by placing three WEC rotors in a numerical wave tank. In particular, the spacing between the three rotors is set to 0.8, 1, and 1.2 times the rotor width, and the hydrodynamic interaction between adjacent rotors is checked. Finally, it is confirmed that the dynamic performance of the rotors slightly changes, but the difference due to the spacing is not noticeable. In addition, the CFD analysis shows a lateral flow phenomenon that cannot be confirmed by linear potential theory, and it is confirmed that the CFD analysis is necessary for the motion analysis of the rotor.

An Experimental Study on Development of Wave Absorber (소파장치 개발에 관한 실험적 연구)

  • 이희성;박준수;권순홍
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.210-214
    • /
    • 2000
  • This paper proposes a new wave absorber made of flexible net structures. The motivation of this research is that the wave absorbers which already invented are not effective in small wave flume. The proposed new wave absorber demonstrated its efficiency when used in small-length wave flume.

  • PDF

A study on the optimal equation of the continuous wave spectrum

  • Cho, Hong-Yeon;Kweon, Hyuck-Min;Jeong, Weon-Mu;Kim, Sang-Ik
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1056-1063
    • /
    • 2015
  • Waves can be expressed in terms of a spectrum; that is, the energy density distribution of a representative wave can be determined using statistical analysis. The JONSWAP, PM and BM spectra have been widely used for the specific target wave data set during storms. In this case, the extracted wave data are usually discontinuous and independent and cover a very short period of the total data-recording period. Previous studies on the continuous wave spectrum have focused on wave deformation in shallow water conditions and cannot be generalized for deep water conditions. In this study, the Generalized Extreme Value (GEV) function is proposed as a more-optimal function for the fitting of the continuous wave spectral shape based on long-term monitored point wave data in deep waters. The GEV function was found to be able to accurately reproduce the wave spectral shape, except for discontinuous waves of greater than 4 m in height.

Two-Dimensional Wave Flume with Water Circulating System for Controlling Water Level (수위 조절 회류시스템을 갖춘 2차원 조파수조)

  • Oh, Sang-Ho;Lee, Dal Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.337-342
    • /
    • 2018
  • Wave flume that enables generating water waves is a core research facility for physical experiment related to coastal engineering works. Recently, a new wave flume of 50 m length was constructed in Korea. The wave flume has a sloped section on its bottom. A novel wave generating system incorporating most-updated wave maker theory was introduced to the flume. In addition, water circulating system for adjusting water level was installed beneath the flume. These technical features and detailed specifications of the wave flume are described in this paper.

CFD Study for Wave Run-up Characteristics Around a Truncated Cylinder with Damper

  • Zhenhao Song;Bo Woo Nam
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.225-237
    • /
    • 2023
  • In this study, numerical simulations for a single fixed truncated circular cylinder in regular waves were conducted to investigate the nonlinear wave run-up under various dampers and wave period conditions. The present study used the volume of fluid (VOF) technique to capture the air-water interface. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation with the k- 𝜖 turbulence model was solved using the commercial computational fluid dynamics (CFD) software STAR-CCM+. First, a systematic spatial convergence study was conducted to assess the performance and precision of the present numerical wave tank. The numerical scheme was validated by comparing the numerical results of wave run-up on a bare truncated cylinder with the experimental results, and a good agreement was achieved. Then, a series of parametric studies were carried out to examine the wave run-up time series around the truncated cylinder with single and dual dampers in terms of the first- and second-order harmonic and mean set-up components. Additionally, the local wave field and the flow velocity vectors adjacent to the cylinder were evaluated. It was confirmed that under short wave conditions, the high position of the damper led to a noticeable increase in the wave run-ups with significant changes in the first- and second-order harmonic components.

Fluctuating wind and wave simulations and its application in structural analysis of a semi-submersible offshore platform

  • Ma, Jin;Zhou, Dai;Han, Zhaolong;Zhang, Kai;Bao, Yan;Dong, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.624-637
    • /
    • 2019
  • A semi-submersible offshore platform always operates under complex weather conditions, especially wind and waves. It is vital to analyze the structural dynamic responses of the platform in short-term sea states under the combined wind and wave loads, which touches upon three following work. Firstly, a derived relationship between wind and waves reveals a correlation of wind velocity and significant wave height. Then, an Improved Mixture Simulation (IMS) method is proposed to simulate the time series of wind/waves accurately and efficiently. Thus, a wind-wave scatter diagram is expanded from the traditional wave scatter diagram. Finally, the time series of wind/wave pressures on the platform in the short-term sea states are converted by Workbench-AQWA. The numerical results demonstrate that the proposed numerical methods are validated to be applicable for wind and wave simulations in structural analyses. The structural dynamic responses of the platform members increase with the wind and wave strength. In the up-wind and wave state, the stresses on the deck, the connections between deck and columns, and the connection between columns and pontoons are relatively larger under the vertical bending moment. These numerical methods and results are wished to provide some references for structural design and health monitoring of several offshore platforms.

Study on Wave Generation Technique and Estimation of Directional Wave Spectra for Multi-Directional Irregular Waves (다방향 불규칙파에 대한 조파 기법 및 방향 스펙트럼 추정 연구)

  • Seunghoon Oh;Sungjun Jung;Sung-Chul Hwang;Eun-Soo Kim;Hong-Gun Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.266-277
    • /
    • 2023
  • In this study, fundamental research is conducted for the generation technique and analysis of multi-directional irregular waves in the Deep Ocean Engineering Basin (DOEB). A three-dimensional boundary element method-based numerical tank is implemented to perform wave generation simulations, and directional spectrum estimation is carried out using the results of simulations. The wave generation technique of the Snake type wave maker, generating multi-directional irregular waves, is implemented using the Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) algorithms. The wave generation technique is validated by comparing the wave spectrum from simulations and experiments. A Maximum Likelihood Method (MLM) based estimation code is developed for estimating the directional wave spectra. The multi-directional irregular waves are tested in the DOEB and the numerical tank, and directional wave spectra obtained from two methodologies are estimated and compared. A correction procedure for the directional distribution of multi-directional waves is established, and the possibility of correcting the directional spreading function using the numerical tank is validated.

Numerical Wave Tank Technology for Multipurpose Simulation in Marine Environmental Engineering (해양환경공학의 다목적 시뮬레이션을 위한 수치파랑수조 기술)

  • 박종천
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2003
  • A virtual reality technology for multipurpose numerical simulation is developed to reproduce and investigate a variety of ocean environmental problems in a 3D Numerical Wave Tank(NWT). The governing equations for solving incompressible fluid motion are Navier-Stokes equation and continuity equation. The Marker-Density function technique is adopted to implement the fully nonlinear freesurface kinematic condition. The marine environmental situations, i.e., waves, currents, etc., are reproduced by use of multi-segmented wavemakers on the basis of the so-called ″snake-principle″. In this paper, some numerical reproduction techniques for regular, and irregular waves, multi-directional waves, Bull's-eye wave. wave-current, and solitary wave are presented, and a model test in motion with large amplitude of roll angle is conducted in the developed 3D-NWT, using a overlaid grid system.

Numerical Analysis on Wave Energy Absorption of OWC-type Wave Power Generation (진동수주형 파력발전기의 에너지 흡수효율 해석)

  • Kyoung, Jo-Hyun;Hong, Sa-Young;Hong, Do-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.64-69
    • /
    • 2006
  • A numerical analysis is made to investigate the wave absorption efficiency of a OWC-type wave power generator. Energy absorption by an OWC(Oscillating Water Column) air-chamber is computed in regular waves, taking account of the oscillating surface-pressure, due to pressure drop, across the duct of the air chamber. The problem is formulated in the scope of potential theory and solved by the Localized Finite Element Method(LFEM), based on the classical variational principle. The efficiency of energy absorption is investigated by. changing wave conditions, sea-bottom slope and pressure drop coefficient.

Wave Boundary Layer: Parameterization Technique and Its Proof

  • Belevich, M.;Safray, A.;Lee, Kwi-Joo;Kim, Kyoung-Hwa
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.5 no.1
    • /
    • pp.29-39
    • /
    • 2002
  • A general investifation into the physical mechanism that is respinsible for drag above the sea surface has been undertaken. On the basis of a ID model of the Wave Boundary Layer(WBL), under a 2D wave field, a parameterization technique for estimation of the drag and mean characteristics of WBL is described. Special attention is paid to estimation of the simplifying assumption of the theory.

  • PDF