• Title/Summary/Keyword: Ocean Response

Search Result 1,440, Processing Time 0.033 seconds

Sunken Ship Precision Image Analysis Using Multi-Beam Echo Sounding Data (다중빔음향측심 자료를 이용한 침몰선박 정밀영상 분석 연구)

  • Lee, Seung-Hyun;Seo, Young Kyo;Suh, Jae-Joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.863-868
    • /
    • 2016
  • In this study, the precise shapes of sunken ships and information on seafloor topography were analyzed using data obtained from a multi-beam echo sounder. The state of each sunken ship was analyzed by processing diverse imagery data which was compared with data obtained from past investigations to determine changes in the state and circumjacent seafloor topography. Apparent changes in the seafloor topography around one sunken ship, the "Pacific Friend", were found from stern to bow as a result of continued submarine erosion and sedimentation. In the case of sunken ship "No. 7 Haeseong", the partial collapse of the bow was revealed in the seabed images captured in 2015, though it had still been intact in images captured during the Korea Hydrographic and Oceanographic Agency's investigation in 2011. This partial collapse was presumed to have resulted from the effects of continued tidal currents, the cargo load of the ship and continued corrosion of the ship over a long time on the seabed. Continuous monitoring of residual fuel inside the ship is necessary to avoid leakage and potential marine pollution. By conducting image analysis on these sunken ships, it has been determined that the structural safety of the ships is seriously influenced by tidal currents and seafloor topography, while the hulls will be continuously changed by corrosion. As a result, it can be concluded that the development of prediction and response techniques that take into consideration residual fuel leakage and environmental changes according to the geological characteristics of sunken ships is necessary.

Optimum Dissolved Oxygen Level for the Growth of the Israeli Strain of Common Carp, Cyprinus carpio in the Recirculating Water System (순환여과식 사육장치내에서 이스라엘계 잉어(Cyprinus carpio)의 성장을 위한 최적용존산소량)

  • KIM In-Bae;KIM Pyong-Kih
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.6
    • /
    • pp.581-585
    • /
    • 1986
  • A growth experiment of the Israeli strain of common carp (Cyprinus carpio) under varying dissolved oxygen levels in the recirculating water system was conducted at the Fish Culture Experiment Station of the National Fisheries University of Pusan from August 28, 1985 to September 17, 1985. Five tanks with a capacity of $5m^3$ of water each were used under the same condition of water parameters except for dissolved oxygen levels which were designed to maintain at 2.0, 2.5, 3.0, 3.5 and 4.0 mg/l ranges. The weight of fish in the beginning was about 300g and each tank was stocked with 200kg of fish. DO level of 3.5mg/l was found to be the best level with a feed coefficient of 1.57 and a daily growth rate of $1.411\%$ whereas 4.mg/l showed a slightly decreased performance of 1.63 and $1.365\%$ respectively. The amounts of feed consumed in 3.5 and 4.0mg/l DO levels were almost the same. Below 3.0mg/l DO levels the growth rate markedly decreased. Furthermore, in 2.0 and 2.5 mg/l groups, the fish did not accept feed vigorously and after feeding the fish usually concentrated around the inflow point showing oxygen deficiency response, The experiment indicates that the DO range of 3.5 to 4.0mg/l is the optimum level for the best growth at $27.5^{\circ}C$. DO concentration above these levels is considered a waste of energy resulting in uneconomical performance, and on the other hand, below these levels, the carp certainly shows a poor growth performance.

  • PDF

Dynamic Relative Displacement of Geosynthetic-Soil Interface Considering Chemical Effect (화학적 영향을 고려한 토목섬유-지반 접촉면의 동적상대변위)

  • Kwak, Chang-Won;Oh, Myoung-Hak;Jang, Dong-In;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.73-81
    • /
    • 2016
  • Recently, the construction of onshore waste landfill sites has been studied due to the increase of waste and geosynthetics are widely utilized to enforce and protect waste landfill. Geosynthetics comprises the interface with soil and the seismic behavior and stability mostly depend on the dynamic shear behavior of the geosynthetic-soil interface. Therefore, the understanding of dynamic shear behavior and dynamic relative displacement of the interface is critical. The dynamic shear behavior of the interface is affected by surrounding conditions and loading and shows very complicated response, and, it is difficult to study theoretically. In this study, laboratory test to investigate dynamic relative displacement is performed under chemical condition. Dynamic interface apparatus is utilized and cyclic simple shear tests are conducted under short term (60 days of submerging period) and long term (840 days of submerging period) conditions. Consequently, relative displacement of the interface shows the largest values under acid condition, which means more severe damage of the interface.

Experimental Study for the Resonance Effect of the Power Buoy Amplitude (공진형 전력부이의 상하변위증폭 효과에 관한 실험적 연구)

  • Kweon, Hyuck-Min;Koh, Hyeok-Jun;Kim, Jung-Rok;Choi, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.585-594
    • /
    • 2013
  • In this study, laboratory experiments and numerical simulations were conducted to test the performance of resonance power buoy system proposed by Kweon et al.(2010). The system is composed of a linear generator and a mooring buoy. The mover of the linear generator mainly has heave motion driven by vertical oscillation of the buoy. In this system, the velocity discrepancy between the mover and the buoy makes electricity. However, ocean wave energy as a natural resource around Korean peninsula is comparatively small and the driving force for producing electricity is not enough for commercialization. Therefore, it is necessary that the buoy motion be amplified by using resonance characteristics. In order to verify the resonance effects on the test power buoy, the experimental investigations were conducted in the large wave flume (length of 110 m, width of 8 m, maximum depth of 6 m) equipped with regular and random plunger wave generator. The resonance draft of test power buoy is designed for the corresponding period of incident wave, 1.96 sec. Regular wave test results show that the heave response amplitude operator(RAO) by a test buoy has the amplification of 5.66 times higher compared to the wave amplitude at the resonance period. Test results of random waves show that the buoy has the largest spectrum area of 20.73 times higher at the point of not the resonance period but the shorter one of 1.85 sec. Therefore this study suggests the resonance power buoy for wave power generation for commercial application in the case of the coastal and oceanic area with smaller wave energy.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.61-97
    • /
    • 2016
  • This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.

Technical Analysis of an MRV System in Relation to the Implementation of a Data Collection System by the International Maritime Organization (국제해사기구 데이터수집시스템 도입에 따른 MRV 지원시스템의 기술적 분석)

  • Kang, Nam-seon;Lee, Jung-yup;Hong, Yeon-jeong;Byeon, Sang-su;Kim, Jin-yhyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.122-129
    • /
    • 2017
  • This study presents the results from a technical analysis of a portal system that is compatible with MRV regulations and utilized to examine energy efficiency in international shipping, in relation to the implementation of a mandatory data collection system by the International Maritime Organization. The details of the SEEMP guidelines, including the data collection system and methods for collecting data on fuel use, were reviewed. Strategies for domestic shipping companies toward MRV have been recommended by identifying differences with the EU MRV, and the technical adequacy of the MRV system was assessed. The MRV system enhances cost and work efficiency by managing emissions data from the early stage to the final stage. It is capable of collecting and reporting emissions data while adhering to the reporting procedures of shipping companies. By granting different access privileges to users, the system supports shipping companies in their data collection and reporting, and also supports verifiers in their data verification activities. Moreover, it makes possible the submission of reports in electronic from, thereby enabling shipping companies to adopt an integrated response to international MRV regulations.

A Study on the Characteristics of Underwater Sound Transmission by Short-term Variation of Sound Speed Profiles in Shallow-Water Channel with Thermocline (수온약층이 존재하는 천해역에서 단기간 음속구조 변화에 따른 음향 신호 전달 변동에 관한 연구)

  • Jeong, Dong-Yeong;Kim, Sea-Moon;Byun, Sung-Hoon;Lim, Yong-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.20-35
    • /
    • 2015
  • Underwater acoustic channel impulse responses (CIR) are influenced by sound speed profile (SSP), and the variation of CIR has significant effects on the performance of underwater acoustic communication systems. A significant change of SSP can occur within a short period, which must be considered during the design of underwater acoustic modems. This paper statistically analyzes the effect of the variation of SSP on the long-range acoustic signal propagation in shallow-water with thermocline using numerical modeling based on the data acquired from JACE13 experiment near Jeju island. The analysis result shows that CIR changes variously according to the SSP and the depth of the transmitter and receiver. We also found that when the transmitter and receiver are deeper, the variation of sound wave propagation pattern is smaller and signal level becomes higher. All CIR obtained in this study show that a series of bottom reflections due to downward refraction and small bottom loss in the shallow water with thermocline can be very important factor for long-range signal transmission and the performance of underwater acoustic communication system in time varying ocean environment can be very sensitive to the variation of SSP even for a short period of time.

A Study on Launching of New Climate System and Greenhouse Gas Emissions Regulations in China's Ports (신기후체제의 출범과 중국 항만의 온실가스 규제에 관한 연구)

  • Kim, Sung-Kuk;Pak, Myong-Sop
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.2
    • /
    • pp.73-90
    • /
    • 2016
  • In Climate change is a global issue that requires global responses. As a key factor in climate change, greenhouse gas (GHG) emissions have attracted increasing attention the international community. One of the crucial global efforts to alleviate climate change is the establishment of an international climate change regime, comprising rules, norms, principles, procedures that are applicable to a wide range of activities. The International Maritime Organization (IMO) received a mandate from the Kyoto Protocol to regulate shipping GHG emissions. However, the IMO Convention and the UN Convention on the Law of the Sea also provide regulations on regarding GHG emissions. To execute its mandate, the IMO has developed various regulatory initiatives. In addition, the Chinese government has declared new regulations which designate parts of its coastal waters as emission control areas (ECA). Owing to the growing recognition of the benefits of ECA, ships, including ocean-going vessels that operate in areas near the Pearl River Delta, Yangtze River Delta, and the Bohai Sea will be obliged to use fuel containing less than 0.5% sulfur. China's shipping industry is playing a growing role in the international shipping market, and its response to these initiatives will have a substantial effect on the future application of these regulations. This study analyzed the GHG mandates of the IMO and the Chinese government, and then examines the main outcomes that have been achieved.

Development of an Unmanned Conveyor Belt Recovery Skimmer for Floating Marine Debris and High Viscosity Oil (무인 컨베이어 벨트식 부유쓰레기 및 고점도유 회수장비 개발 연구)

  • Han, Sang-goo;Lee, Won-ju;Jang, Se-hyun;Choi, Jae-hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.2
    • /
    • pp.208-215
    • /
    • 2017
  • When persistent oil, such as crude oil or Bunker C oil, is spilled at sea, viscosity increases through the weathering process. Equipment that can collect this oil when mixed with floating marine debris is very limited. In this study, devices that can be attached to the outside of existing oil skimmers have been applied to the inside of the main body, to develop an unmanned conveyor belt type floating marine debris and high viscosity oil recovery skimmer, which is composed of a conveyor belt, a sweeper with a forced inflow device, and a collection tank equipped with a buoyant body. The resulting skimmer was operated at a speed of 1.2 knots at a distance of 30 m in a sea area test. It was stable when moving laterally in any direction. An oil recovery performance test was conducted using a portable storage tank, and oil was recovered from a minimum of $7.8k{\ell}/h$ to a maximum of $23.3k{\ell}/h$. Moreover, recovery of $7.7k{\ell}/h$ was obtained in a wave water tank test with floating marine debris such as PET bottles and oil mixed. If the equipment developed in this study was used in the field for oil pollution accidents, it could be expected to contribute to improved response capability. We believe our equipment could be used in further studies to improvement the performance of existing portable oil skimmers.

Immunolocalization of Wound-Inducible Insoluble Acid Invertases in Pea (Pisum sativum L) (완두콩(Pisum sativum L.) 상처에서 유도되는 불용성 산성 인버타제의 면역조직화)

  • Kim, Donggiun;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6425-6431
    • /
    • 2015
  • Invertase, that hydrolyzes sucrose into glucose and fructose, plays a great role in carbohydrate reallocation between the photosynthetic source tissue and various sink tissues. Invertase also occurs in a variety of isoforms for various functions in plants. Insoluble invertases were extracted only in buffer solutions containing high concentrations of salt. Within these classes, acid invertase has an optimum activity at acidic pH (pH 4-5). Induction of insoluble acid invertase (INAC-INV) in leaf, stem, and root tissues in response to physical wounding has been investigated. To detect the localization of INAC-INV within the plant, immunolocalization has been performed. In this study, the accumulation of INAC-INV was noticeable to reach maximum levels on 72 hr after mechanical injuries. INAC-INV was induced in wounded leaves 3 times more than control leaves. Immunolocalization results showed that INAC-INV accumulated in wall appositions and intercellular spaces. INAC-INV was also localized at sieve cell walls in phloem tissues close to the site of wounding. Taken together, this study suggested that INAC-INV induction upon wounding injuries can play a role on responses to the high energy demand for wound healing process.