• Title/Summary/Keyword: Ocean Eddy

Search Result 192, Processing Time 0.026 seconds

인공위성 고도계 자료와 해색 위성 자료 기반의 동해 중규모 소용돌이 탐지 비교 (Comparison of Mesoscale Eddy Detection from Satellite Altimeter Data and Ocean Color Data in the East Sea)

  • 박지은;박경애
    • 한국해양학회지:바다
    • /
    • 제24권2호
    • /
    • pp.282-297
    • /
    • 2019
  • 인공위성 자료를 활용한 중규모 소용돌이 탐지에는 해수면온도, 식물플랑크톤 클로로필-a 색소 농도, 해수면고도 등 다양한 해양 변수를 활용할 수 있다. 각 위성 해양 자료는 시 공간 해상도, 관측 방식 및 자료 처리 과정이 상이하기 때문에, 동일한 소용돌이에 대해서도 다른 탐지 결과를 유도할 수 있어, 인공위성 자료를 활용한 소용돌이 탐지에 대한 기초 연구가 필요하다. 본 연구에서는 해색 위성 자료, 위성 고도계 해수면고도 자료, 적외선 해수면온도 자료를 활용하여 동해 중규모 소용돌이를 탐지하고 그 결과를 상호 비교하였다. 연속된 해색 위성 클로로필-a 농도 영상으로부터 최대 상호 상관 계수를 통하여 산출한 표층 해류장과, 위성 고도계의 해수면고도 영상 자료로부터 산출한 지형류를 활용하여 동해 중규모 소용돌이를 탐지하였다. 소용돌이 탐지 결과를 상호 비교하기 위하여 1) 해색 영상과 고도계 영상이 동시에 소용돌이를 탐지한 경우, 2) 해색 영상과 해수면온도 영상에는 존재하나 고도계 자료는 탐지하지 못한 경우, 3) 해색 영상과 해수면온도 영상에는 소용돌이가 존재하지 않으나 고도계 자료에서는 존재하는 경우 등 세 가지 사례를 선택하였다. 이와 같은 세 가지 사례를 통하여 동해 중규모 소용돌이 탐지 시 인공위성 고도계 자료의 문제점 제기와 더불어, 해색 위성 자료와 적외선 해수면온도 자료의 한계점을 제시하였다. 또한 해양 현상과 인공위성 관측 원리에 대한 깊이 있는 이해를 기반으로 소용돌이 탐지 및 관련 연구가 진행되어야 함을 강조하였다.

Variability of Mesoscale Eddies in the Pacific Ocean Simulated by an Eddy Resolving OGCM of $1/12^{\circ}$

  • Yim B.Y.;Noh Y.;You S.H.;Yoon J.H.;Qiu B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 PARALLEL CFD 2006
    • /
    • pp.133-136
    • /
    • 2006
  • The mesoscale eddy field in the North Pacific Ocean, simulated by a high resolution eddy-resolving OGCM ($1/12^{\circ}C$ horizontal resolution), was analyzed, and compared with satellite altimetry data of TOPEX/Poseidon. High levels of eddy kinetic energy (EKE) appear near the Kurosho, North Equatorial Current (NEC), and Subtropical Countercurrent (STCC) in the western part of the subropical gyre. In particlure, it was found that the EKE level of the STCC has a well-defined annual cycle, but no distinct annual cycle of the EKE exists in any other zonal current of the North Pacific Ocean.

  • PDF

The Warm Eddy in the East Korean Bight

  • Shin, Chang-Woong;Kim, Cheol-Soo;Byun, Sang-Kyung
    • Ocean and Polar Research
    • /
    • 제23권1호
    • /
    • pp.1-10
    • /
    • 2001
  • Sea surface temperature derived from infrared images of NOAA satellites showed a warm eddy in the East Korean Bight(EKB) or Donghan Man during the winter 1997${\sim}$2000. To describe the warm eddy in the EKB, hydrographic data collected in 1934 and 1936 were also analyzed. The center of the warm eddy was located at about $39^{\circ}N$ and $129^{\circ}E$. The temperature and salinity of the eddy was about $4.0^{\circ}C$ and 34.0 psu, respectively, at 100m depth. The eddy rotated anticyclonically with a geostrophic current speed of about 20 cm/s. The mean state calculated from the data of 1922${\sim}$1960 showed the existence of a warm eddy over the EKB in winter. The eddy persists until late spring, and disappears from the previous location in summertime, only to be seen again in autumn.

  • PDF

동해에서 저주파 음파전파에 미치는 난수성 소용돌이의 영향 (Influence of a Warm Eddy on Low-frequency Sound Propagation in the East Sea)

  • 김봉채;최복경;김병남
    • Ocean and Polar Research
    • /
    • 제34권3호
    • /
    • pp.325-335
    • /
    • 2012
  • It is well known that sound waves in the sea propagates under the influence of sea surface and bottom roughness, the sound speed profile, the water depth, and the density of sea floor sediment. In particular, an abrupt change of sound speed with depth can greatly affect sound propagation through an eddy. Eddies are frequently generated in the East Sea near the Korean Peninsula. A warm eddy with diameter of about 150 km is often observed, and the sound speed profile is greatly changed within about 400 m of water depth at the center by the eddy around the Ulleung Basin in the East Sea. The characteristics of low-frequency sound propagation across a warm eddy are investigated by a sound propagation model in order to understand the influence of warm eddies. The acoustic rays and propagation losses are calculated by a range-dependent acoustic model in conditions where the eddy is both present and absent. We found that low-frequency sound propagation is affected by the warm eddy, and that the phenomena dominate the upper ocean within 800 m of water depth. The propagation losses of a 100 Hz frequency are variable within ${\pm}15$ dB with depth and range by the warm eddy. Such variations are more pronounced at the deep source near the sound channel axis than the shallow source. Furthermore, low-frequency sound propagation from the eddy center to the eddy edge is more affected by the warm eddy than sound propagation from the eddy edge to the eddy center.

Comparison of nonlinear 1$1/2$-layer and 2$1/2$-layer numerical models with strong offshore winds and the Tsushima Current in the East Sea

  • Kim, Soon-Young;Lee, Hyong-Sun;Dughong Min;Yoon, Hong-Joo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제3권2호
    • /
    • pp.91-103
    • /
    • 1999
  • According to numerical experiments, the Sokcho Eddy is produced at $37 5~39.0^{\circ}N$ by strong offshore winds, whereas the Ulleung Eddy is produced at $35~37^{\circ}N$ by an inflow variation of the Tsushima Current. These locations compare well with visual observations. The nonlinear 1$1/2$-layer model showed that most of the East Korea Warm Current (EKWC) driven by the Tsushima Current form the Ulleung Eddy that is larger and stronger than the Sokcho Eddy. In contrast, the nonlinear 2$1/2$-layer model showed that most of the EKWC travels further northward due to a strong subsurface current, thereby enhancing the Sokcho Eddy making it larger and stronger than the Ulleung Eddy. The Sokcho Eddy is also produced relatively offshore due to an eastward subsurface current in the frontal region. Using the 1$1/2$-layer model, when the mass of the Tsushima Current decreases, the two eddies are weakened and produce a circular shape. In the 2$1/2$-layer model the EKWC pushes the Ulleung Eddy northward after 330 days, next the Sokcho and Ulleung eddies begin to interact with each other, and then after 360 days the Ulleung Eddy finally disappears absorbed by the relatively stronger Sokcho Eddy. This behavior compares favorably with other visual observations.

  • PDF

오픈폼을 활용한 자유진동하는 라이저 주위 유동의 LES 해석 (Large Eddy Simulation of Free Motion of Marine Riser using OpenFOAM)

  • 정재환;정광열;길재흥;정동호
    • 한국해양공학회지
    • /
    • 제33권5호
    • /
    • pp.387-393
    • /
    • 2019
  • In this study, the free motion of a riser due to vortex shedding was numerically simulated with Large Eddy Simulation (LES) and Detached Eddy Simulation (DES) turbulence models. A numerical simulation program was developed by applying the Rhie-Chow interpolation method to the pressure correction of the OpenFOAM standard solver pimpleDyMFoam. To verify the developed program, the vortex shedding around the fixed riser at Re = 3900 was calculated, and the results were compared with the existing experimental and numerical data. Moreover, the vortex-induced vibration of a riser supported by a linear spring was numerically simulated while varying the spring constant. The results are compared with published direct numerical simulation (DNS) results. The present calculation results show that the numerical method is appropriate for simulating the vortex-induced motion of a riser, including lock-in phenomena.

수정 FUNWAVE-TVD 수치모형을 이용한 파랑변형 (Wave Transformation using Modified FUNWAVE-TVD Numerical Model)

  • 최영광;서승남
    • 한국해안·해양공학회논문집
    • /
    • 제27권6호
    • /
    • pp.406-418
    • /
    • 2015
  • 기존 FUNWAVE-TVD 버전 2.1 모형을 수정한 본 모형의 검증을 위해 고립파 실험, Vincent and Briggs(1989)의 비쇄파 및 쇄파 실험, Luth et al. (1994)의 수리실험을 수행하였다. 쇄파 실험의 경우 기존 결과와 비교하기 위하여 eddy viscosity를 이용한 쇄파 방법도 포함하였다. Eddy viscosity 쇄파 방법을 이용하여 Vincent and Briggs(1989)의 쇄파 실험에 적용한 결과 수정된 모형에서는 수중천퇴 중심의 y축을 기준으로 파랑류(wave-induced current)의 대칭성이 유지되었으나 FUNWAVE-TVD 버전 2.1 모형에서는 대칭성이 유지되지 않았다. 또한 eddy viscosity 쇄파 방법을 이용한 경우가 천수방정식으로 전환하여 쇄파를 모의하는 방법보다 관측치에 더 가깝다. 그리고 FUNWAVE-TVD 버전 2.1 모형에 사용한 기법들과 비교하기 위하여 Erduran et al.(2005)이 제시한 4차 정확도의 MUSCL-TVD 기법과 minmod limiter를 이용한 3차 정확도의 기법을 적용하여 고립파의 전파 양상을 비교 검토하였다.

중해상도 전지구 해양대순환 모형의 상층 수온과 혼합층 깊이 모사 성능 평가 (Evaluation of Upper Ocean Temperature and Mixed Layer Depth in an Eddy-permitting Global Ocean General Circulation Model)

  • 장찬주;민홍식;김철호;강석구;이흥재
    • Ocean and Polar Research
    • /
    • 제28권3호
    • /
    • pp.245-258
    • /
    • 2006
  • We investigated seasonal variations of the upper ocean temperature and the mixed layer depth (MLD) in an eddy-permitting global ocean general circulation model (OGCM) to assess the OGCM perfermance. The OGCM is based on the GFDL MOM3 which has a horizontal resolution of 0.5 degree and 30 vertical levels. The OGCM was integrated for 68 years using a monthly-mean climatological wind stress forcing. The model sea surface temperature (SST) and sea surface salinity were restored to the Levitus climatology with a time scale of 30 days. Annual-mean model SST shows a cold bias $(<\;-2^{\circ}C)$ in the summer hemisphere and a warm bias $(>\;1^{\circ}C)$ in the winter hemisphere mainly due to the restoring boundary condition of temperature. The model MLD captures well the observed features in most areas, with a slightly deep bias. However, in the Ross Sea and Weddell Sea, the model shows significantly deeper MLD than the climatology-mainly due to weak salinity stratifications in the model. For amplitude of seasonal variation, the model SST is smaller $(1{\sim}3^{\circ}C)$ than the observation largely due to the restoring surface boundary condition while the model MLD has larger seasonal variation $({\sim}50m)$. It is suggested that for more realistic simulation of the upper ocean structure in the present eddy-permitting ocean model, more refinements in the surface boundary condition for the thermohaline forcing and parameterization for vertical mixing are required, together with the incorporation of a sea-ice model.

해석적 방법을 이용한 슬롯리스 양측식 코어드 타입 영구자석 발전기의 와전류 손실 해석 (Eddy Current Loss Analysis of Slotless Double-sided Cored Type Permanent Magnet Generator by using Analytical Method)

  • 장강현;정경훈;홍기용;김경환;최장영
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1639-1647
    • /
    • 2016
  • This paper deals with eddy current loss analysis of Slotless Double sided Cored type permanent magnet linear generator by using analytical method, space harmonic method. In order to calculate eddy current, this paper derives analytical solution by the Maxwell equation, magnetic vector potential, Faraday's law and a two-dimensional(2-D) cartesian coordinate system. First, we derived the armature reaction field distribution produced by armature wingding current. Second, by using derived armature reaction field solution, the analytical solution for eddy current density distribution are also obtained. Finally, the analytical solution for eddy current loss induced in permanent magnets(PMs) are derived by using equivalent, electrical resistance calculated from PMs volume and eddy current density distribution solution. The analytical result from space harmonic method are validated extensively by comparing with finite element method(FEM).

해양파이프라인 비파괴검사를 위한 와전류 센서 개발 (Eddy Current Sensor Development for Offshore Pipeline NDT Inspection)

  • 이슬기;송성진
    • 한국해양공학회지
    • /
    • 제29권2호
    • /
    • pp.199-206
    • /
    • 2015
  • Regular high-strength carbon steel is currently the most commonly used pipe material for onshore and offshore pipelines. The corrosion of offshore pipelines is a major problem as they age. The collapse of these structures as a result of corrosion may have a heavy cost is lives and assets. Therefore, their monitoring and screening is a high priority for maintenance, which may ensure the integrity and safety of a structure. Monitoring risers and subsea pipelines effectively can be accomplished using eddy current inspection to detect the average remaining wall thickness of corroded low-alloy carbon steel pipelines through corrosion scaling, paint, coating, and concrete. A test specimen for simulating the offshore pipeline is prepared as a standard specimen for an analysis and experiment with differential bobbin eddy current sensors. Using encircling coils, the signals for the defect in the simulated specimen are analyzed and evaluated in experiments. Differential bobbin eddy current sensors can diagnose the defects in a specimen, and experiments have been carried out using the developed bobbin eddy current sensor. As a result, the most optimum coil parameters were selected for designing differential bobbin eddy current sensors.