DOI QR코드

DOI QR Code

Wave Transformation using Modified FUNWAVE-TVD Numerical Model

수정 FUNWAVE-TVD 수치모형을 이용한 파랑변형

  • Choi, Young-Kwang (Task Force for Construction of RV ISABU Support Facility, Korea Institute of Ocean Science and Technology) ;
  • Seo, Seung-Nam (Task Force for Construction of RV ISABU Support Facility, Korea Institute of Ocean Science and Technology)
  • 최영광 (한국해양과학기술원 이사부호기반시설건설단) ;
  • 서승남 (한국해양과학기술원 이사부호기반시설건설단)
  • Received : 2015.09.21
  • Accepted : 2015.10.28
  • Published : 2015.12.31

Abstract

The present modified FUNWAVE-TVD model, which is a modification to its previous version 2.1, is applied to solitary wave propagation and is tested against the experiments of Vincent and Briggs(1989) and Luth et al.(1994). The eddy viscosity breaking scheme is used for comparison with the existing study in the case of breaking experiment. The symmetry of wave-induced current is maintained when the modified model is employed to Vincent and Briggs(1989) breaking experiment, but the symmetry of wave-induced current in previous model is not maintained. A better agreement with the breaking experimental data is obtained in the modified model using eddy viscosity breaking scheme than the shock capturing breaking scheme using nonlinear shallow water equation. For comparison with the schemes in the model, the fourth order MUSCL-TVD scheme by Erduran et al.(2005) and the third order MUSCL-TVD scheme using minmod limiter is applied, and the numerical solutions of solitary wave are compared.

기존 FUNWAVE-TVD 버전 2.1 모형을 수정한 본 모형의 검증을 위해 고립파 실험, Vincent and Briggs(1989)의 비쇄파 및 쇄파 실험, Luth et al. (1994)의 수리실험을 수행하였다. 쇄파 실험의 경우 기존 결과와 비교하기 위하여 eddy viscosity를 이용한 쇄파 방법도 포함하였다. Eddy viscosity 쇄파 방법을 이용하여 Vincent and Briggs(1989)의 쇄파 실험에 적용한 결과 수정된 모형에서는 수중천퇴 중심의 y축을 기준으로 파랑류(wave-induced current)의 대칭성이 유지되었으나 FUNWAVE-TVD 버전 2.1 모형에서는 대칭성이 유지되지 않았다. 또한 eddy viscosity 쇄파 방법을 이용한 경우가 천수방정식으로 전환하여 쇄파를 모의하는 방법보다 관측치에 더 가깝다. 그리고 FUNWAVE-TVD 버전 2.1 모형에 사용한 기법들과 비교하기 위하여 Erduran et al.(2005)이 제시한 4차 정확도의 MUSCL-TVD 기법과 minmod limiter를 이용한 3차 정확도의 기법을 적용하여 고립파의 전파 양상을 비교 검토하였다.

Keywords

References

  1. Beji, S. and Battjes, J.A. (1993). Experimental investigation of wave propagation over a bar. Coastal Eng., 19, 151-162. https://doi.org/10.1016/0378-3839(93)90022-Z
  2. Chen, Q., Kirby, J.T., Dalrymple, R.A., Shi, F. and Thornton, E.B. (2003). Boussinesq modeling of longshore currents. J. Geophys. Res., 108(C11), 26-1-26-18.
  3. Chen, Q. (2006). Fully nonlinear Boussinesq-type equations for waves and currents over porous beds. J. Eng. Mech., 132(2), 220-230. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:2(220)
  4. Choi, J., Lim, C.H., Lee, J.I. and Yoon, S.B. (2009). Evolution of waves and currents over a submerged laboratory shoal. Coastal Eng., 56, 297-312. https://doi.org/10.1016/j.coastaleng.2008.09.002
  5. Erduran, K.S., Ilic, S. and Kutija, V. (2005). Hybrid finite-volume finite-difference scheme for the solution of Boussinesq equations. Int. J. Numer. Methods Fluids, 49, 1213-1232. https://doi.org/10.1002/fld.1021
  6. Gobbi, M.F. and Kirby, J.T. (1999). Wave evolution over submerged sills: tests of a high-order Boussinesq model. Coastal Eng., 37, 57-96. https://doi.org/10.1016/S0378-3839(99)00015-0
  7. Hsiao, S.-C., Liu, P.L.-F. and Chen, Y. (2002). Nonlinear water waves propagating over a permeable bed. Proc. R. Soc. Lond. A, 458, 1291-1322. https://doi.org/10.1098/rspa.2001.0903
  8. Kennedy, A.B., Chen, Q., Kirby, J.T. and Dalrymple, R.A. (2000). Boussinesq modeling of wave transformation, breaking, and runup. I: 1D. J. Waterway Port Coastal Ocean Eng., 126(1), 39-47. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(39)
  9. Kim, D.H., Lynett, P.J. and Socolofsky, S.A. (2009). A depth-integrated model for weakly dispersive, turbulent, and rotational fluid flows. Ocean Model., 27, 198-214. https://doi.org/10.1016/j.ocemod.2009.01.005
  10. Kirby, J,T., Wei, G., Chen, Q., Kennedy, A.B. and Dalrymple, R.A. (1998). FUNWAVE 1.0, Fully nonlinear Boussinesq wave model, Documentation and User's manual. Research report CACR-98-06, University of Delaware.
  11. Luth, H.R., Klopman, G. and Kitou, N. (1994). Kinematics of waves breaking partially on an offshore bar; LDV measurements of waves with and without a net onshore current. Report H-1573, Delft Hydraulics.
  12. Lynett, P.J., Liu, P.L.-F. (2004). A two-layer approach to wave modelling. Proc. R. Soc. Lond. A, 460, 2637-3669. https://doi.org/10.1098/rspa.2004.1305
  13. Nwogu, O. (1993). An alternative form of the Boussinesq equations for nearshore wave propagation. J. Waterway Port Coastal Ocean Eng., 119, 618-638. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618)
  14. Nwogu, O.G. and Demirbilek, Z. (2001). BOUSS-2D: A Boussinesq wave model for coastal regions and harbors. Technical report ERDC/CHL TR-01-25, U.S. Army Corps of Engineers.
  15. Roeber, V. and Cheung, K.F. (2012). Boussinesq-type model for energetic breaking waves in fringing reef environments. Coastal Eng., 70, 1-20. https://doi.org/10.1016/j.coastaleng.2012.06.001
  16. Shi, F., Dalrymple, R.A., Kirby, J.T., Chen, Q. and Kennedy, A. (2001). A fully nonlinear Boussinesq model in generalized curvilinear coordinates. Coastal Eng., 42, 337-358. https://doi.org/10.1016/S0378-3839(00)00067-3
  17. Shi, F., Kirby, J.T., Harris, J.C., Geiman, J.D. and Grilli, S.T. (2012). A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Model., 43-44, 36-51. https://doi.org/10.1016/j.ocemod.2011.12.004
  18. Shi, F., Tehranirad, B., Kirby, J.T., Harris, J.C. and Grilli, S. (2013). FUNWAVE-TVD, Fully nonlinear Boussinesq wave model with TVD solver, Documentation and User's manual(Version 2.1 revision september 2013). Research report NO. CACR-13-XX, University of Delaware.
  19. Svendson, I.A. (2006). Introduction to nearshore hydrodynamics, World Scientific Publishing Co., Singapore.
  20. Toro, E.F. (1999). Riemann solvers and numerical methods for fluid dynamics, A practical introduction, second ed. Springer, New York.
  21. Vincent, C.L. and Briggs, M.J. (1989). Refraction-diffraction of irregular waves over a mound. J. Waterway Port Coastal Ocean Eng., 115(2), 269-284. https://doi.org/10.1061/(ASCE)0733-950X(1989)115:2(269)
  22. Walkley, M. and Berzins, M. (2002). A finite element method for the two-dimensional extended Boussinesq equations. Int. J. Numer. Methods Fluids, 39, 865-885. https://doi.org/10.1002/fld.349
  23. Wei, G., Kirby, J.T., Grilli, S.T. and Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves. 1: Highly nonlinear unsteady waves. J. Fluid Mech., 294, 71-92. https://doi.org/10.1017/S0022112095002813
  24. Woo, S.-B and Liu, P.L.-F. (2004). Finite-element model for modified Boussinesq equations. I:Model development. J. Waterway Port Coastal Ocean Eng., 130(1), 1-16. https://doi.org/10.1061/(ASCE)0733-950X(2004)130:1(1)
  25. Yamamoto, S., Kano, S. and Daiguji, H. (1998). An efficient CFD approach for simulating unsteady hypersonic shock-shock interference flows. Comput. Fluids, 27, 571-580. https://doi.org/10.1016/S0045-7930(97)00061-3
  26. Yoon, S.B., Cho, Y.-S. and Lee, C. (2004). Effects of breakinginduced currents on refraction-diffraction of irregular waves over submerged shoal. Ocean Eng., 31, 633-652. https://doi.org/10.1016/j.oceaneng.2003.07.008

Cited by

  1. Comparison of Numerical Solutions by TVD Schemes in Simulations of Irregular Waves Propagating over a Submerged Shoal Using FUNWAVE-TVD Numerical Model vol.30, pp.4, 2018, https://doi.org/10.9765/KSCOE.2018.30.4.143