Browse > Article
http://dx.doi.org/10.7850/jkso.2019.24.2.282

Comparison of Mesoscale Eddy Detection from Satellite Altimeter Data and Ocean Color Data in the East Sea  

PARK, JI-EUN (Department of Science Education, Seoul National University)
PARK, KYUNG-AE (Department of Earth Science Education / Research Institute of Oceanography, Seoul National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.24, no.2, 2019 , pp. 282-297 More about this Journal
Abstract
Detection of mesoscale oceanic eddies using satellite data can utilize various ocean parameters such as sea surface temperature (SST), chlorophyll-a pigment concentration in phytoplankton, and sea level altimetry measurements. Observation methods vary for each satellite dataset, as it is obtained using different temporal and spatial resolution, and optimized data processing. Different detection results can be derived for the same oceanic eddies; therefore, fundamental research on eddy detection using satellite data is required. In this study, we used ocean color satellite data, sea level altimetry data, and infrared SST data to detect mesoscale eddies in the East Sea and compared results from different detection methods. The sea surface current field derived from the consecutive ocean color chlorophyll-a concentration images using the maximum cross correlation coefficient and the geostrophic current field obtained from the sea level altimetry data were used to detect the mesoscale eddies in the East Sea. In order to compare the eddy detection from satellite data, the results were divided into three cases as follows: 1) the eddy was detected in both the ocean color and altimeter images simultaneously; 2) the eddy was detected from ocean color and SST images, but no eddy was detected in the altimeter data; 3) the eddy was not detected in ocean color image, while the altimeter data detected the eddy. Through these three cases, we described the difficulties with satellite altimetry data and the limitations of ocean color and infrared SST data for eddy detection. It was also emphasized that study on eddy detection and related research required an in-depth understanding of the mesoscale oceanic phenomenon and the principles of satellite observation.
Keywords
Mesoscale oceanic eddy; Satellite data; Altimetry; Ocean color; Sea surface current;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Isern-Fontanet, J., E. Garcia-Ladona and J. Font, 2003. Identification of marine eddies from altimetric maps. J. Atmos. Ocean. Technol., 20: 772-778.   DOI
2 Isern-Fontanet, J., E. Garcia-Ladona and J. Font, 2006. Vortices of the Mediterranean Sea: an altimetric perspective. J. Phys. Oceanogr., 36: 87-103.   DOI
3 Isoda, Y. and S.I. Saitoh, 1993. The northward intruding eddy along the east coast of Korea. J. Oceanogr., 49: 443-458.   DOI
4 Jayne, S.R. and J. Marotzke, 2002. The oceanic eddy heat transport. J. Phys. Oceanogr., 32: 3328-3345.   DOI
5 Chae, H.-J. and K.-A. Park, 2009. Characteristics of speckle errors of SeaWiFS chlorophyll-${\alpha}$ concentration in the East Sea. J. Korean Earth Sci. Soc., 30: 234-246.   DOI
6 Chaigneau, A., A. Gizolme and C. Grados, 2008. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr., 79: 106-119.   DOI
7 Chaigneau, A., G., Eldin and B. Deqitte, 2009. Eddy activity in the four major upwelling systems from satellite altimetry (1992-2007). Prog. Oceanogr., 83: 117-123.   DOI
8 Chaigneau, A., M. Le Texier, G. Eldin, C. Grados and O. Pizarro, 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. J. Geophys. Res.: Oceans, 116: C11.
9 Chelton, D.B., M.G. Schlax, R.M. Samelson and R.A. de Szoeke, 2007. Global observations of large oceanic eddies. Geophys. Res. Lett., 34: L15606, 10.1029/2007GL030812.   DOI
10 Chelton, D.B., M.G. Schlax and R.M. Samelson, 2011a. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91: 167-216.   DOI
11 Chelton, D.B., P. Gaube, M.G. Schlax, J.J. Early and R.M. Samelson, 2011b. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334: 328-332.   DOI
12 Cornillon, P. and K.-A. Park, 2001. Warm Core Ring Velocities Inferred from NSCAT Data. Geophys. Res. Lett., 28: 575-578. doi:10.1029/2000GL011487.   DOI
13 Cornillon, P.C., R. Weyer and G. Flierl, 1989. Translational velocity of warm core rings relative to the slope water. J. Phys. Oceanogr., 19: 1317-1332.   DOI
14 Dewar, W.K. and G.R. Flierl, 1987. Some effects of the wind on rings. J. Phys. Oceanogr., 17: 1653-1667.   DOI
15 Bowen, M.M., W.J. Emery, J.L. Wilkin, P.C. Tildesley, I.J. Barton and R. Knewtson, 2002. Extracting multiyear surface currents from sequential thermal imagery using the maximum cross-correlation technique. J. Atmos. Ocean. Technol., 19: 1665-1676.   DOI
16 Bryan, K., 1996. The role of mesoscale eddies in the poleward transport of heat by the oceans: a review. Physica D, 98: 249-257.   DOI
17 Weiss, J., 1991. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48: 273-294   DOI
18 Ubelmann, C., P. Klein and L.L. Fu, 2015. Dynamic interpolation of sea surface height and potential applications for future high-resolution altimetry mapping. J. Atmos. Ocean. Technol., 32: 177-184.   DOI
19 Waugh, D.W., E.R. Abraham and M.M. Bowen. 2006. Spatial variations of stirring in the surface ocean: a case study of the Tasman Sea. J. Physical Oceanogr., 36: 526-542.   DOI
20 Wunsch, C., 1999. Where do ocean eddy heat fluxes matter? J. Geophys. Res.: Oceans, 104: 13235-13249.   DOI
21 Yoon, S.T., K.I. Chang, S. Nam, T. Rho, D.J. Kang, T. Lee, K.-A. Park, V. Lobanov, D. Kaplunenko, P. Tishchenko and K.R. Kim, 2018. Re-initiation of bottom water formation in the East Sea (Japan Sea) in a warming world. Scientific reports, 8: 1576.   DOI
22 Roemmich, D. and J. Gilson, 2001. Eddy transport of heat and thermocline waters in the North Pacific: a key to interannual/decadal climate variability? J. Physical Oceanogr., 31: 675-687.   DOI
23 Zavialov, P.O., J.V. Grigorieva, O.O. Mller, Jr. A.G. Kostianoy and M. Gregoire, 2002. Continuity preserving modified maximum cross-correlation technique. J. Geophys. Res., 107: 3160. doi:10.1029/2001JC001116.   DOI
24 Qiu, B. and S. Chen, 2005. Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI and altimetry measurements. J. Phys. Oceanogr., 35: 458-473.   DOI
25 Richardson, P.L., 1980. Gulf Stream ring trajectories. J. Phys. Oceanogr., 10: 90-104.   DOI
26 Sadarjoen, I.A. and F.H. Post, 1999. Geometric methods for vortex extraction. In Data Visualization (pp. 53-62). Springer, Vienna.
27 Sadarjoen, I.A. and F.H. Post, 2000. Detection, quantification, and tracking of vortices using streamline geometry. Comput. Graphics, 24: 333-341.   DOI
28 Schmitt, R.W. and D.B. Olson, 1985. Wintertime convection in warmcore rings: Thermocline ventilation and the formation of mesoscale lenses. J. Geophys. Res., 90: 8823-8837.   DOI
29 Shin, H.R., C.W. Shin, C. Kim, S.K. Byun and S.C. Hwang, 2005. Movement and structural variation of warm eddy WE92 for three years in the western East/Japan Sea. Deep Sea Res. Part II Top. Stud. Oceanogr., 52: 1742-1762.   DOI
30 Tokmakian, R., P.T. Strub, and J. McClean-Padman, 1990. "Evaluation of the maximum cross-correlation method of estimating sea surface velocities from sequential satellite images. J. Atmos. Ocean. Technol., 7: 852-865.   DOI
31 Okubo, A., 1970. Horizontal dispersion of floatable particles in the vicinity of velocity singularity such as convergences. Deep Sea Res., 17: 445-454.
32 Toner, M., Jr A.D. Kirwan, A.C. Poje, L.H. Kantha, F.E. Mller-Karger and C.K.R.T. Jones, 2003. Chlorophyll dispersal by eddy-eddy interactions in the Gulf of Mexico. J. Geophys. Res., 108: 3105. doi:10.1029/2002JC001499.   DOI
33 Traon, P.Y. Le, F. Nadal and N. Ducet, 1998. An improved mapping method of multisatellite altimeter data. J. Atmos. Ocean. Technol., 15: 522-534.   DOI
34 Nof, D., 1983. On the migration of isolated eddies with applications to Gulf Stream rings. J. Mar. Res., 41: 399-425.   DOI
35 Park, J.-E., K.-A. Park, D.S. Ullman, P.C. Cornillon and Y.-J. Park, 2016. Observation of diurnal variations in mesoscale eddy sea-surface currents using GOCI data, Remote Sensing Letters, 7: 1131-1140. DOI: 10.1080/2150704X.2016.1219423.   DOI
36 Park, K.-A. and J.Y. Chung, 1999. Spatial and temporal scale variations of sea surface temperature in the East Sea using NOAA/AVHRR data. J. Oceanogr., 55: 271-288.   DOI
37 Park, K.-A., D.S. Ullman, K. Kim, J.Y. Chung and K.R. Kim, 2007. Spatial and temporal variability of satellite-observed Subpolar Front in the East/Japan Sea. Deep Sea Res. Part I: Oceanogr. Res. Pap., 54: 453-470.   DOI
38 Park, K.-A., H.J. Woo and J.H. Ryu, 2012. Spatial scales of mesoscale eddies from GOCI Chlorophyll-a concentration images in the East/Japan Sea. Ocean Sci. J., 47: 347-358.   DOI
39 Park, K.-A., J.Y. Chung and K. Kim, 2004. Sea surface temperature fronts in the East (Japan) Sea and temporal variations. Geophys. Res. Lett., 31(7), doi.org/10.1029/2004GL019424.   DOI
40 Park, K.-A., M.S. Lee, J.E. Park, D. Ullman, P.C. Cornillon and Y.J. Park, 2018. Surface currents from hourly variations of suspended particulate matter from Geostationary Ocean Color Imager data. Int. J. Remote Sens., 39: 1929-1949.   DOI
41 Park, K.-A., P. Cornillon and D.L. Codiga, 2006. Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. J. Geophys. Res., 111: C03021. doi:10.1029/2005JC003016.   DOI
42 Kang, S.K., J.Y. Cherniawsky, M.G.G. Foreman, J.-K. So and S.R. Lee, 2008. Spatial variability in annual sea level variations around the Korean peninsula. Geophys. Res. Lett., 35: L03603. doi:10.1029/2007GL032527.   DOI
43 Kelly, K.A., 1989. An inverse model for near-surface velocity from infrared images. J. Phys. Oceanogr., 19: 1845-1864.   DOI
44 Kim, K., K.R. Kim, D.H. Min, Y. Volkov, J.H. Yoon and M. Takematsu, 2001. Warming and structural changes in the East (Japan) Sea: a clue to future changes in global oceans?. Geophys. Res. Lett., 28: 3293-3296.   DOI
45 Lai, D.V. and P.L. Richardson, 1977. Distribution and movement of Gulf Stream rings. J. Phys. Oceanogr., 7: 670-683.   DOI
46 Lee, D.K. and P. Niiler, 2010. Eddies in the southwestern East/Japan Sea. Deep Sea Res. Part I: Oceanogr. Res. Pap., 57: 1233-1242.   DOI
47 Lee, K.J., 2013. Mesoscale eddies in the East/Japan Sea derived from low-resolution gridded altimeter data: Detection algorithms and characteristics of statistical eddy properties, Doctoral thesis, Seoul National University.
48 Mason, E., A. Pascual and J.C. McWilliams, 2014. A new sea surface height-based code for oceanic mesoscale eddy tracking. McWilliams, 31: 1181-1188.
49 Nencioli, F., C. Dong, T. Dickey, L. Washburn and J.C. McWilliams, 2010. A vector geometry-based eddy detection algorithm and its application to a high resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Oceanic Technol., 27: 564-579.   DOI
50 Mitchell, D.A., D.R. Watts, M. Wimbush, W.J. Teague, K.L. Tracey, J.W. Book, K.-I. Chang, M.-S. Suk and J.H. Yoon, 2005. Upper circulation patterns in the Ulleung Basin. Deep Sea Res. Part II: Top. Stud. Oceanogr., 52: 1617-1638.   DOI
51 Emery, W.J., A.C. Thomas, M.J. Collins, W.R. Crawford and D.L. Mackas, 1986. An Objective Method for Computing Advective Surface Velocities from Sequential Infrared Satellite Images. J. Geophys. Res., 91: 12865-12878. doi:101029/JC091iC11p12865.   DOI
52 Evans, R.H., K.S. Baker, O.B. Brown and R.C. Smith, 1985. Chronology of warm-core ring 82B. J. Geophys. Res., 90: 8803-8812.   DOI
53 Gower, J.F.R., K.L. Denman and R.J. Holyer, 1980. Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structures. Nature, 288: 157-159.   DOI
54 Henson, S.A. and A.C. Thomas, 2008. A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep Sea Res. Part I: Oceanogr. Res. Pap., 55: 163-176.   DOI
55 Hooker, S.B. and J.W. Brown, 1994. Warm core ring dynamics derived from satellite imagery. J. Geophys. Res., 99: 25181-25194.   DOI
56 Ichiye, T., 1984. Some problems of circulation and hydrography of the Japan Sea and the Tsushima Current. p. 15-54. In: T. Ichiye (ed.). Ocean Hydrodynamics of the Japan and East China Seas. Vol. 39: Elsevier Oceanography Series. Elsevier, Amsterdam.