• Title/Summary/Keyword: Ocean Color Satellite

Search Result 228, Processing Time 0.023 seconds

Spatial Distribution of Pigment Concentration Around the East Korean Warm Current Region Derived from Satellite Data - Satellite Observation in May 1980 - (위성원격탐사에 의한 동한난류 주변 해역의 색소농도 공간적 분포 -1980년 5월 관측을 중심으로 -)

  • Kim Sang Woo;Saitoh Sei-ich;Kim Dong Sun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.265-272
    • /
    • 2002
  • Spatial distribution of Phytoplankton Pigment Concentration (PPC) and Sea Surface Temperature (SST) around the East Korean Warm Current (EKWC) was described, using both Coastal Zone Color Scanner (CZCS) images and Advanced Very High Resolution Radiometer (AVHRR) images in May, 1980. Water mass in this region can be classified into five categories in the horizontal profile of PPC and SST, nLw (normalized water-leaving radiance) images: (1) coastal cold water region associated with concentrations of dissolved organic material or yellow colored substances and suspended sediments, (2) cold water region of thermal frontal occurred by a combination of phytoplankton absorption and suspended materials, (3) warm water overlay region by the phytoplankton absorption than the suspended materials; (4) warm water region occurred by the low phytoplankton absorption, and (5) offshore region occurred by the high phytoplankton absorption. In particular, the highest PPC (>2.0 mg/m^3) area appeared in the CZCS and AVHRR images with a band shaped distribution of the thermal front and ocean color front region, which is located the coastal cold waters alonB western thermal front of the warm streamer of the EKWC. In this region, the highest PPC occurred by a combination of the high absorption of the phytoplankton (443 nm) and highest reflectance of suspended materials (550 nm). Another high PPC ($\simeq$$6\;mg/m^3$) appeared in the warm water overlay region inside warm streamer. High phytoplankton pigment concentration of this region was corresponding to the short wavelength of 443 nm, which represented phytoplankton absorption of the CZCS image.

Detection for Region of Volcanic Ash Fall Deposits Using NIR Channels of the GOCI (GOCI 근적외선 채널을 활용한 화산재 퇴적지역 탐지)

  • Sun, Jongsun;Lee, Won-Jin;Park, Sun-Cheon;Lee, Duk Kee
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1519-1529
    • /
    • 2018
  • The volcanic ash can spread out over hundreds of kilometers in case of large volcanic eruption. The deposition of volcanic ash may induce damages in urban area and transportation facilities. In order to respond volcanic hazard, it is necessary to estimate efficiently the diffusion area of volcanic ash. The purpose of this study is to compare in-situ volcanic deposition and satellite images of the volcanic eruption case. In this study, we used Near-Infrared (NIR) channels 7 and 8 of Geostationary Ocean Color Imager (GOCI) images for Mt. Aso eruption in 16:40 (UTC) on October 7, 2016. To estimate deposit area clearly, we applied Principal Component Analysis (PCA) and a series of morphology filtering (Eroded, Opening, Dilation, and Closing), respectively. In addition, we compared the field data from the Japan Meteorological Agency (JMA) report about Aso volcano eruption in 2016. From the results, we could extract volcanic ash deposition area of about $380km^2$. In the traditional method, ash deposition area was estimated by human activity such as direct measurement and hearsay evidence, which are inefficient and time consuming effort. Our results inferred that satellite imagery is one of the powerful tools for surface change mapping in case of large volcanic eruption.

Particulate Organic Carbon (POC) Algorithms for the southwestern part of the East Sea during spring-summer period using MODIS Aqua (MODIS를 이용한 춘.하계 동해 서남부 해역의 해수 중 입자성 유기탄소 함량 추정 알고리즘 개선)

  • Hong, Gi-Hoon;Ahn, Yu-Hwan;Son, Young-Baek;Ryu, Joo-Hyung;Kim, Chang-Joon;Yang, Dong-Beom;Kim, Young-Il;Chung, Chang-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.107-120
    • /
    • 2011
  • Several MODIS AQUA products have been compared with shipboard data to assess the possibility of using remote sensing to estimate particulate organic carbon (POC) concentration in the surface waters of the East Sea. A total of 30 POC profiles obtained in spring and summer seasons of the years of 2006~2010 were compared with remote sensing reflectance at various wavelengths and diffuse attenuation coefficient at 490 nm observed by MODIS AQUA. The algorithm thus established was $POC=266.85^*[R_{rs}(488)/R_{rs}(555)]^{-1.447}$ ($R^2=0.924$) with root mean square error of 20.9 mg $m^{-3}$. Remotely sensed POC contents derived using our algorithm appeared also not to be affected by the presence of non-POC component in suspended particulate matter. Therefore this algorithm could be applied to obtain POC concentration over the East Sea using MODIS Aqua observation.

Development of Suspended Particulate Matter Algorithms for Ocean Color Remote Sensing

  • Ahn, Yu-Hwan;Moon, Jeong-Eun;Gallegos, Sonia
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.4
    • /
    • pp.285-295
    • /
    • 2001
  • We developed a CASE-II water model that will enable the simulation of remote sensing reflectance($R_{rs}$) at the coastal waters for the retrieval of suspended sediments (SS) concentrations from satellite imagery. The model has six components which are: water, chlorophyll, dissolved organic matter (DOM), non-chlorophyllous particles (NC), heterotrophic microorganisms and an unknown component, possibly represented by bubbles or other particulates unrelated to the five first components. We measured $R_{rs}$, concentration of SS and chlorophyll, and absorption of DOM during our field campaigns in Korea. In addition, we generated $R_{rs}$ from different concentrations of SS and chlorophyll, and various absorptions of DOM by random number functions to create a large database to test the model. We assimilated both the computer generated parameters as well as the in-situ measurements in order to reconstruct the reflectance spectra. We validated the model by comparing model-reconstructed spectra with observed spectra. The estimated $R_{rs}$ spectra were used to (1) evaluate the performance of four wavelengths and wavelengths ratios for accurate retrieval of SS. 2) identify the optimum band for SS retrieval, and 3) assess the influence of the SS on the chlorophyll algorithm. The results indicate that single bands at longer wavelengths in visible better results than commonly used channel ratios. The wavelength of 625nm is suggested as a new and optimal wavelength for SS retrieval. Because this wavelength is not available from SeaWiFS, 555nm is offered as an alternative. The presence of SS in coastal areas can lead to overestimation chlorophyll concentrations greater than 20-500%.

A Study on the Retrievals of Downward Solar Radiation at the Surface based on the Observations from Multiple Geostationary Satellites (정지궤도 위성자료를 이용한 지표면 도달 태양복사량 연구)

  • Jee, Joon-Bum;Zo, Il-Sung;Lee, Kyu-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.123-135
    • /
    • 2013
  • The reflectance observed in the visible channels of a geostationary meteorological satellite can be used to calculate the amount of cloud by comparing the reflectance with the observed solar radiation data at the ground. Using this, the solar radiation arriving at the surface can be estimated. This study used the Meteorological Imager (MI) reflectance observed at a wavelength of 675 nm and the Geostationary Ocean Color Imager (GOCI) reflectance observed at similar wavelengths of 660 and 680 nm. Cloudy days during a typhoon and sunny days with little cloud cover were compared using observation data from the geostationary satellite. Pixels that had more than 40% reflectance in the satellite images showed less than 0.3 of the cloud index and blocked more than 70% of the solar energy. Pixels that showed less than 15% reflectance showed more than 0.9 of the cloud index and let through more than 90% of the solar energy to the surface. The calculated daily accumulated solar radiation was compared with the observed daily accumulated solar radiation in 22 observatories of the Korean Meteorological Administration. The values calculated for the COMS and MTSAT MI sensors were smaller than the observation and showed low correlations of 0.94 and 0.93, respectively, which were smaller than the 0.96 correlation coefficient calculated for the GOCI sensor. The RMSEs of MTSAT, COMS MI and GOCI calculation results showed 2.21, 2.09, 2.02 MJ/$m^2$ in order. Comparison of the calculated daily accumulated results from the GOCI sensor with the observed data on the ground gave correlations and RMSEs for cloudy and sunny days of 0.96 and 0.86, and 1.82 MJ/$m^2$ and 2.27 MJ/$m^2$, respectively, indicating a slightly higher correlation for cloudy days. Compared to the meteorological imager, the geostationary ocean color imager in the COMS satellite has limited observation time and observation is not continuous. However, it has the advantage of providing high resolution so that it too can be useful for solar energy analysis.

Overview and Prospective of Satellite Chlorophyll-a Concentration Retrieval Algorithms Suitable for Coastal Turbid Sea Waters (연안 혼탁 해수에 적합한 위성 클로로필-a 농도 산출 알고리즘 개관과 전망)

  • Park, Ji-Eun;Park, Kyung-Ae;Lee, Ji-Hyun
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.247-263
    • /
    • 2021
  • Climate change has been accelerating in coastal waters recently; therefore, the importance of coastal environmental monitoring is also increasing. Chlorophyll-a concentration, an important marine variable, in the surface layer of the global ocean has been retrieved for decades through various ocean color satellites and utilized in various research fields. However, the commonly used chlorophyll-a concentration algorithm is only suitable for application in clear water and cannot be applied to turbid waters because significant errors are caused by differences in their distinct components and optical properties. In addition, designing a standard algorithm for coastal waters is difficult because of differences in various optical characteristics depending on the coastal area. To overcome this problem, various algorithms have been developed and used considering the components and the variations in the optical properties of coastal waters with high turbidity. Chlorophyll-a concentration retrieval algorithms can be categorized into empirical algorithms, semi-analytic algorithms, and machine learning algorithms. These algorithms mainly use the blue-green band ratio based on the reflective spectrum of sea water as the basic form. In constrast, algorithms developed for turbid water utilizes the green-red band ratio, the red-near-infrared band ratio, and the inherent optical properties to compensate for the effect of dissolved organisms and suspended sediments in coastal area. Reliable retrieval of satellite chlorophyll-a concentration from turbid waters is essential for monitoring the coastal environment and understanding changes in the marine ecosystem. Therefore, this study summarizes the pre-existing algorithms that have been utilized for monitoring turbid Case 2 water and presents the problems associated with the mornitoring and study of seas around the Korean Peninsula. We also summarize the prospective for future ocean color satellites, which can yield more accurate and diverse results regarding the ecological environment with the development of multi-spectral and hyperspectral sensors.

Design and Development of Multiple Input Device and Multiscale Interaction for GOCI Observation Satellite Imagery on the Tiled Display (타일드 디스플레이에서의 천리안 해양관측 위성영상을 위한 다중 입력 장치 및 멀티 스케일 인터랙션 설계 및 구현)

  • Park, Chan-Sol;Lee, Kwan-Ju;Kim, Nak-Hoon;Lee, Sang-Ho;Seo, Ki-Young;Park, Kyoung Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.541-550
    • /
    • 2014
  • This paper describes a multi-scale user interaction based tiled display visualization system using multiple input devices for monitoring and analyzing Geostationary Ocean Color Imager (GOCI) observation satellite imagery. This system provides multi-touch screen, Kinect motion sensing, and moblie interface for multiple users to control the satellite imagery either in front of the tiled display screen or far away from a distance to view marine environmental or climate changes around Korean peninsular more effectively. Due to a large amount of memory required for loading high-resolution GOCI satellite images, we employed the multi-level image load technique where the image was divided into small tiled images in order to reduce the load on the system and to be operated smoothly by user manipulation. This system performs the abstraction of common input information from multi-user Kinect motion and gestures, multi-touch points and mobile interaction information to enable a variety of user interactions for any tiled display application. In addition, the unit of time corresponding to the selected date of the satellite images are sequentially displayed on the screen and multiple users can zoom-in/out, move the imagery and select buttons to trigger functions.

GOCI-II Based Low Sea Surface Salinity and Hourly Variation by Typhoon Hinnamnor (GOCI-II 기반 저염분수 산출과 태풍 힌남노에 의한 시간별 염분 변화)

  • So-Hyun Kim;Dae-Won Kim;Young-Heon Jo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2023
  • The physical properties of the ocean interior are determined by temperature and salinity. To observe them, we rely on satellite observations for broad regions of oceans. However, the satellite for salinity measurement, Soil Moisture Active Passive (SMAP), has low temporal and spatial resolutions; thus, more is needed to resolve the fast-changing coastal environment. To overcome these limitations, the algorithm to use the Geostationary Ocean Color Imager-II (GOCI-II) of the Geo-Kompsat-2B (GK-2B) was developed as the inputs for a Multi-layer Perceptron Neural Network (MPNN). The result shows that coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (RRMSE) between GOCI-II based sea surface salinity (SSS) (GOCI-II SSS) and SMAP was 0.94, 0.58 psu, and 1.87%, respectively. Furthermore, the spatial variation of GOCI-II SSS was also very uniform, with over 0.8 of R2 and less than 1 psu of RMSE. In addition, GOCI-II SSS was also compared with SSS of Ieodo Ocean Research Station (I-ORS), suggesting that the result was slightly low, which was further analyzed for the following reasons. We further illustrated the valuable information of high spatial and temporal variation of GOCI-II SSS to analyze SSS variation by the 11th typhoon, Hinnamnor, in 2022. We used the mean and standard deviation (STD) of one day of GOCI-II SSS, revealing the high spatial and temporal changes. Thus, this study will shed light on the research for monitoring the highly changing marine environment.

Moon Imaging for the Calibration of the COMS Meteorological Imager (천리안 위성의 기상탑재체 보정을 위한 달 영상 획득 방안)

  • Park, Bong-Kyu;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.44-50
    • /
    • 2010
  • COMS accommodates multiple payloads; Meteorological Image(MI), Ocean Color Imager(GOCI) and Ka-band communication payloads. In order to improve the quality of MI visible channel, the moon image has been taken into account as backup reference in addition to Albedo monitoring. However, obtaining the moon image by adding special mission schedule is not recommended after IOT, because we may miss chances to obtain meteorological images during the time slots for special imaging. As an alternative solution, an approach extracting moon image from MI FD(Full Disk) image has been proposed when the moon is positioned near to the earth. However, prediction of acquisition time of moon image is somewhat difficult as the moon moves while the MI is scanning type sensor. And the moon can not be seen when it is behind the earth or outside of FD field of view. This paper discusses how effectively the moon can be detected by the MI FD imaging. For that purpose, this paper describes an approach taken to predict the time when the moon image is achievable and then introduces the results obtained from computer simulation.

Koh Chang Island Eco-Tourism Mapping by Balloon-born Remote Sensing Imagery System

  • Kusanagi, Michiro;Nogami, Jun;Choomnoommanee, Tanapati;Laosuwan, Teerawong;Penaflor, Eileen;Shulian, Niu;Zuyan, Yao
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.894-896
    • /
    • 2003
  • Koh Chang Island is located near the east border of Thailand. The government of Thailand promotes the island as a model of eco-tourism spots. The Island undeveloped until recent years, is expected to change to major tourist attraction. 'Digital Koh Chang project' has thus. The main objective of this project is to monitor the environment and land use status of the island and to support its sound development. In March 2003, a field survey of this project was planned and field data were collected using both airborne and ground platforms and an ocean vessel. These data were combined with satellite data in the laboratory. This presentation is all balloon-born system field operation. A 5-meter length balloon filled with Helium gas was used, whose payload consisted of two RGB standard color digital still cameras, two directional rotating servo motors, a camera mount cradle as well as signal transmitting and receiving components. A series of aerial high-resolution digital images were rather easily obtained using this inexpensive system, making it possible to monitor intended landscape features in a specific field. Design of simple, low-cost and easily transportable flying platforms and local field surveys using them are useful for getting local ground truth data to calibrate satellite or airborne-based RS data. The design analysis to upgrade the system is further investigated.

  • PDF