• Title/Summary/Keyword: Ocean Color Remote Sensing

Search Result 216, Processing Time 0.021 seconds

Particulate Organic Carbon (POC) Algorithms for the southwestern part of the East Sea during spring-summer period using MODIS Aqua (MODIS를 이용한 춘.하계 동해 서남부 해역의 해수 중 입자성 유기탄소 함량 추정 알고리즘 개선)

  • Hong, Gi-Hoon;Ahn, Yu-Hwan;Son, Young-Baek;Ryu, Joo-Hyung;Kim, Chang-Joon;Yang, Dong-Beom;Kim, Young-Il;Chung, Chang-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.107-120
    • /
    • 2011
  • Several MODIS AQUA products have been compared with shipboard data to assess the possibility of using remote sensing to estimate particulate organic carbon (POC) concentration in the surface waters of the East Sea. A total of 30 POC profiles obtained in spring and summer seasons of the years of 2006~2010 were compared with remote sensing reflectance at various wavelengths and diffuse attenuation coefficient at 490 nm observed by MODIS AQUA. The algorithm thus established was $POC=266.85^*[R_{rs}(488)/R_{rs}(555)]^{-1.447}$ ($R^2=0.924$) with root mean square error of 20.9 mg $m^{-3}$. Remotely sensed POC contents derived using our algorithm appeared also not to be affected by the presence of non-POC component in suspended particulate matter. Therefore this algorithm could be applied to obtain POC concentration over the East Sea using MODIS Aqua observation.

Verification of CDOM Algorithms Based on Ocean Color Remote Sensing Data in the East Sea (동해에서 해색센서를 이용한 CDOM추정 알고리즘 검증)

  • Kim, Yun-Jung;Kim, Hyun-Cheol;Son, Young-Baek;Park, Mi-Ok;Shin, Woo-Chur;Kang, Sung-Won;Rho, Tae-Keun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.421-434
    • /
    • 2012
  • Colored Dissolved Organic Matter (CDOM) is one of the important components of optical properties of seawater to determine ecosystem dynamics in a given marine area. The optical characteristics of CDOM may depend on the various ecosystem and environmental variables in the sea and those variables may vary region to region. Therefore, the retrieval algorithm for determining light absorption coefficient of CDOM ($a_{CDOM}$) using satellite remote sensing reflectance ($R_{rs}$) developed from other region may not be directly applicable to the other region, and it must be validated using an in-situ ground-truth observation. We have tested 6 known CDOM algorithms (three Semi-analytical and three Empirical CDOM algorithms) developed from other regions of the world ocean with laboratory determined in-situ values for the East Sea using field data collected during seven oceanographic cruises in the period of 2009~2011. Our field measurements extended from the coastal waters to the open oceanic type CASE-1 Waters. Our study showed that Quasi-Analytical Algorithm (QAA_v5) derived $a_{CDOM}$(412) appears to match in-situ $a_{CDOM}$(412) values statistically. Semi-analytical algorithms appeared to underestimate and empirical ones overestimated $a_{CDOM}$ in the East Sea. $a_{CDOM}$(412) value was found to be relatively high in the relatively high satellite derived-chlorophyll-a area. $a_{CDOM}$(412) value appears to be influenced by the amount of chlorophyll-a in seawater. The outcome of this work may be referenced to develop $a_{CDOM}$ algorithm for the new Korean Geostationary Ocean Color Imager (GOCI).

ERROR ANALYSIS FOR GOCI RADIOMETRIC CALIBRATION

  • Kang, Gm-Sil;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.187-190
    • /
    • 2007
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. The GOCI has been designed to provide multi-spectral data to detect, monitor, quantify, and predict short term changes of coastal ocean environment for marine science research and application purpose. The target area of GOCI observation covers sea area around the Korean Peninsula. Based on the nonlinear radiometric model, the GOCI calibration method has been derived. The nonlinear radiometric model for GOCI will be validated through ground test. The GOCI radiometric calibration is based on on-board calibration devices; solar diffuser, DAMD (Diffuser Aging Monitoring Device). In this paper, the GOCI radiometric error propagation is analyzed. The radiometric model error due to the dark current nonlinearity is analyzed as a systematic error. Also the offset correction error due to gain/offset instability is considered. The radiometric accuracy depends mainly on the ground characterization accuracies of solar diffuser and DAMD.

  • PDF

The Chlorophyll Concentration in the Southwestern East Sea Observed by Coastal Zone Color Scanner (CZCS)

  • Lee Dong-Kyu;Son Seung-Hyun
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.1
    • /
    • pp.8-13
    • /
    • 2000
  • Monthly mean chlorophyll concentration in the East Sea was estimated from the ocean color observed by the Coastal Zone Color Scanner (CZCS) on Nimbus-7 satellite which had performed various remote sensing missions from 1979 to 1986. The areas of high chlorophyll concentration were found in the sea between Siberia coast and Sakhalin Island, in the Donghan Bay and in the Ulleung Basin. In the southwestern East Sea, especially in the area near Ulleung Island, the yearly maximum chlorophyll concentration occurred in December. The chlorophyll concentration in Ulleung Basin in December was about two times higher than during spring bloom in April. The early winter bloom occurred in the warm side of the front that was formed between warm water from the East China Sea and nutrition rich cold water from the northern East Sea.

  • PDF

The Validation of chlorophyll-a band ratio algorithm of coastal area using SeaWiFS wavelength (SeaWiFS 밴드역에 의한 연안해역의 엽록소 밴드비율 알고리듬 검증)

  • 정종철;유신재
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.37-45
    • /
    • 2000
  • Since being launched for ocean observing in 1997, the SeaWiFS sensor has supplied data on ocean chlorophyll distribution and environmental conditions of the atmosphere. Until now, a lot of SeaWiFS data have been archived and utilized for ocean monitoring and land observation. The SeaWiFS sensor has 1km spatial resolution, therefore, it is difficult to obtain data at the coastal zone. Since atmospheric correction algorithms at the coastal area have not been confirmed for chlorophyll algorithm, the ocean color data analysis for coastal zone is not common. In particular, domestic coastal areas have high suspended sediments concentrations and higher absorption influence of colored dissolved organic matter (CDOM), released from in-land, than open-sea. Thus, a useful algorithm for analysis of chlorophyll distribution in domestic coastal areas has not been developed. In this study, empirical algorithms, using data from the ocean color sensor, were developed for monitoring of chlorophyll distribution of coastal areas. In the process of the development of the algorithms, we can find that the red band (665nm) should be used for analyzing of domestic coastal areas near the Yellow Sea.

ESTIMATE OF CHLOROPHYLL CONCENTRATION FROM OCEAN COLOR: UNCERTAINTY ASSOCIATED WITH UNKNOWN BACKSCATTERING

  • Zhang, Xiaodong;Kirilenko, Andrei
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.446-449
    • /
    • 2006
  • It is backscattering of solar radiation by water body that makes ocean color observable from above, either by airplanes or satellites. Given the very low direct contribution to backscattering by phytoplankton cells, it is curious why the retrieval of phytoplankton concentration from remotely observed ocean color is evidently successful. From semianalytical bio-optical models, a dataset is created of spectral absorption, scattering and backscattering coefficients as a function of chlorophyll concentration. Four scenarios are considered, 1) only molecular and no particle scattering, 2) random particle backscattering uncorrelated with chlorophyll concentration, 3) constrained random particle scattering with known backscattering ratio, and 4) constrained random scattering with random backscattering ratio. Scenario 1 only introduces moderate errors of -20% - 90%. And for scenarios 3 and 4, the errors are largely within 30% and 100%. Scenario 2 introduces the largest errors, with the retrieved chlorophyll concentration virtually uncorrelated with the true values, implying the backscattering must somehow be related to the trophic state. The results of the study suggested These 3 cases confirmed that while it is the absorption by phytoplankton that in large part decides the accuracy of chlorophyll concentration retrieval, for the success of monitoring of global ocean primary productivity we have to improve our knowledge on particle backscattering.

  • PDF

Development of Korea Ocean Satellite Center (KOSC): System Design on Reception, Processing and Distribution of Geostationary Ocean Color Imager (GOCI) Data (해양위성센터 구축: 통신해양기상위성 해색센서(GOCI) 자료의 수신, 처리, 배포 시스템 설계)

  • Yang, Chan-Su;Cho, Seong-Ick;Han, Hee-Jeong;Yoon, Sok;Kwak, Ki-Yong;Yhn, Yu-Whan
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.137-144
    • /
    • 2007
  • In KORDI (Korea Ocean Research and Development Institute), the KOSC (Korea Ocean Satellite Center) construction project is being prepared for acquisition, processing and distribution of sensor data via L-band from GOCI (Geostationary Ocean Color Imager) instrument which is loaded on COMS (Communication, Ocean and Meteorological Satellite); it will be launched in 2008. Ansan (the headquarter of KORDI) has been selected for the location of KOSC between 5 proposed sites, because it has the best condition to receive radio wave. The data acquisition system is classified into antenna and RF. Antenna is designed to be $\phi$ 9m cassegrain antenna which has 19.35 G/T$(dB/^{\circ}K)$ at 1.67GHz. RF module is divided into LNA (low noise amplifier) and down converter, those are designed to send only horizontal polarization to modem. The existing building is re-designed and arranged for the KOSC operation concept; computing room, board of electricity, data processing room, operation room. Hardware and network facilities have been designed to adapt for efficiency of each functions. The distribution system which is one of the most important systems will be constructed mainly on the internet. and it is also being considered constructing outer data distribution system as a web hosting service for offering received data to user less than an hour.

Development of Suspended Sediment Algorithm for Landsat TM/ETM+ in Coastal Sea Waters - A Case Study in Saemangeum Area - (Landsat TM/ETM+ 연안 부유퇴적물 알고리즘 개발 - 새만금 주변 해역을 중심으로 -)

  • Min Jee-Eun;Ahn Yu-Hwan;Lee Kyu-Sung;Ryu Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.87-99
    • /
    • 2006
  • The Median Resolution Sensors (MRSs) for land observation such as Landsat-ETM+ and SPOT-HRV are more effective than Ocean Color Sensors (OCSs) for studying of detailed ecological and biogeochemical components of the coastal waters. In this study, we developed suspended sediment algorithm for Landsat TM/ETM+ by considering the spectral response curve of each band. To estimate suspended sediment concentration (SS) from satellite image data, there are two difference types of algorithms, that are derived for enhancing the accuracy of SS from Landsat imagery. Both empirical and remote sensing reflectance model (hereafter referred to as $R_{rs}$ model) are used here. This study tried to compare two algorithm, and verified using in situ SS data. It was found that the empirical SS algorithm using band 2 produced the best result. $R_{rs}$ model-based SS algorithm estimated higher values than empirical SS algorithm. In this study we used $R_{rs}$ model developed by Ahn (2000) focused on the Mediterranean coastal area. That's owing to the difference of oceanic characteristics between Mediterranean and Korean coastal area. In the future we will improve that $R_{rs}$ model for the Korean coastal area, then the result will be advanced.

ChlorophyII and suspended sediment specific absorption coefficient in the sea.

  • Ahn, Yu-Hwan;Moon, Jeong-Eon
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.399-403
    • /
    • 1998
  • Absorption coefficient per mass unit of particles, specific absorption coefficient, is one of main parameters in developing algorithms for ocean color remote sensing. Specific absorption coefficient of chlorophyll (a$^*_{ph}$) and suspended sediment (SS) were analyzed by "wet filter technique" and "Kishino method" for data sets observed in the Yellow and Mediterranean Seas. A new data-recovering method for the filter technique was also developed using spectrum slopes. This method recovered the baseline of spectrum that was often missed in the Kishino method. High a$^*_{ph}$($\lambda$) values in the oligotrophic Mediterranean Sea and low values in the Yellow Sea were observed, spanning over the range of 0.02 to 0.12 $m^2$/mg, at the chlorophyll maximum absorption wavelength 440nm. The empirical relationship between a$^*_{ph}$ and chlorophyll concentration was found to fit a power function, which was slightly different from that proposed by Bricaud et ai. (1995). Absorption specific coefficients for suspended sediment (a$^*_{SS}$) didn't show any relationship with concentrations of suspended sediment. However, the average value of a$^*_{SS}$ at 440nm was close to the specific absorption coefficient of soil (loess) measured by Ahn (1990). The more-pronounced variability of a$^*_{SS}$ than a$^*_{ph}$ perhaps can explain more wide range of size-distribution for SS, which were determined by their specific gravity and agitation of water mass in the sea surface.

  • PDF

Development of the Regional Algorithms to Quantify Chlorophyll a and Suspended Solid in the Korean Waters using Ocean Color (한국 근해 Ocean Color 위성자료의 정량화)

  • Suh Young Sang;Jang Lee Hyun;Lee Na Kyung;Kim Bok Kee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.207-215
    • /
    • 2002
  • Ocean color properties can be quantified by the relationship between the band ratios of the sensor on the ocean color satellites and the measured field ocean color parameters, A tool to determine the abundance of primary organism using the observed ocean color properties from satellite is presented. Coincident to ocean color satellite passes over the Korean waters, the research vessels were deployed to survey the East Sea, the South Sea and the West Sea around the Korean waters, We have been able to have more than 101) data sets containing coincident in situ chlorophyll a and the estimated chlorophyll a derived from SeaWiFS (Sea-viewing Wide Field-of-view Sensor) from february, 1999 to October, 2001. We were able to develop three proper regional algorithms for the East Sea, the South Sea and the West Sea of the Korean peninsula to estimate chlorophyll a, and set up regional algorithms to quantify the suspended solid in the southern sea of the Korean peninsula, Futhermore we were successful in finding out a simple way of estimating chlorophyll a in the turbid water (Case 2 water) using the relationship between in situ chlorophyll a and the estimated chlorophyll a from the processed level 2 data, using the NASA's global algorithm.