Browse > Article
http://dx.doi.org/10.7780/kjrs.2006.22.2.87

Development of Suspended Sediment Algorithm for Landsat TM/ETM+ in Coastal Sea Waters - A Case Study in Saemangeum Area -  

Min Jee-Eun (Ocean Satellite Research Group, Korean Ocean Research & Development Institute (KORDI), Department of Geoinformatic Engineering, Inha University)
Ahn Yu-Hwan (Ocean Satellite Research Group, Korean Ocean Research & Development Institute (KORDI))
Lee Kyu-Sung (Department of Geoinformatic Engineering, Inha University)
Ryu Joo-Hyung (Ocean Satellite Research Group, Korean Ocean Research & Development Institute (KORDI))
Publication Information
Korean Journal of Remote Sensing / v.22, no.2, 2006 , pp. 87-99 More about this Journal
Abstract
The Median Resolution Sensors (MRSs) for land observation such as Landsat-ETM+ and SPOT-HRV are more effective than Ocean Color Sensors (OCSs) for studying of detailed ecological and biogeochemical components of the coastal waters. In this study, we developed suspended sediment algorithm for Landsat TM/ETM+ by considering the spectral response curve of each band. To estimate suspended sediment concentration (SS) from satellite image data, there are two difference types of algorithms, that are derived for enhancing the accuracy of SS from Landsat imagery. Both empirical and remote sensing reflectance model (hereafter referred to as $R_{rs}$ model) are used here. This study tried to compare two algorithm, and verified using in situ SS data. It was found that the empirical SS algorithm using band 2 produced the best result. $R_{rs}$ model-based SS algorithm estimated higher values than empirical SS algorithm. In this study we used $R_{rs}$ model developed by Ahn (2000) focused on the Mediterranean coastal area. That's owing to the difference of oceanic characteristics between Mediterranean and Korean coastal area. In the future we will improve that $R_{rs}$ model for the Korean coastal area, then the result will be advanced.
Keywords
Landsat ETM+; suspended sediment algorithm; remote sensing reflectance; Saemangeum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahn, Y. H., 1999. Development of an inverse model from ocean reflectance, Marin Technology Society Journal, 33: 69-80   DOI
2 Ahn, Y. H., J. E. Moon, and S Gallegos, 2001. Development of suspended particulate matters algorithms for ocean color remote sensing, Korean Journal of Remote Sensing, 17: 285-295   DOI
3 Miller, R. L. and Brent A. M., 2004. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters, Remote Sensing of Environment, 93: 259-266   DOI   ScienceOn
4 Morel, A. and L. Prieur, 1976. Eclairements sous marins, Resultats des Campagnes a la mer, 10: 1-256. Publications CNEXO
5 Morel, A. and L. Prieur, 1977. Analysis of variations in ocean color, Limnology of oceanography, 22: 709-722   DOI   ScienceOn
6 Chavez, P. S. Jr., 1996. Image based atmospheric corrections - Revisited and improved, Photogrammetric Engineering and Remote Sensing, 62: 1025-1036
7 Gordon, H. R., 1997. Atmospheric correction of ocean color imagery in the earth observing system era, Journal of Geophysical Research, 102: 17081-17106   DOI
8 Jeffrey, S. W. and G. F. Humphrey, 1975. New spectrophotometric equations for determining chlorophylls a, b, c and c in higher plants, algae and natural phytoplankton. Biochemie Physiologie Pflanzen, 167: 374-384
9 Ahn, Y. H., Shanmugam P. and J. E. Moon, 2006. Retrieval of ocean colour from high resolution multi-spectral imagery for monitoring highly dynamic ocean features, International Journal of Remote Sensing, 20: 367-392
10 이상호, 최현용, 손영태, 권효근, 김영곤, 양재삼, 정해진, 김종구, 2003. 하계 서해안 새만금 연안역 주변 저염수의 순환, 한국해양학회지, 8(2): 138-150
11 Clark, D. K., E. T. Baker and A. E. Strong, 1980. Upwelling spectral radiance distribution in relation to particulate matter in sea water, Boundary-Layer Meteorology, 18(3): 287-298   DOI
12 Froidefond, J. M., F. Lahet, C. Hu, D. Doxaran, D. Guiral, M. T. Prost, and J. -F. Ternon, 2004, Mudflats and mud suspension observed from satellite data in Frech Guiana, Marine Geology, 208: 153-168   DOI   ScienceOn
13 한국해양연구원 새만금해양환경연구센터 홈페이지 http://www.saemangeum.re.kr/
14 Landsat 7 Science Data User Handbook http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html
15 최용규, 권정노, 1998. 황해 남동해역 투명도의 계절 변화, 한국수산학회지, 31(3): 323-329
16 한국해양연구원, 1999. 위성에 의한 적조 및 해수 탁도 원격탐사 기술개발, 한국해양연구원 보고서
17 Min, J. E., J. H. Ryu, P. Shanmugam, Y. H. Ahn, and K. S. Lee, 2004. Monitoring suspended sediment distribution using Landsat TM/ETM+ data in coastal waters of Saemangeum, Korea, International Symposium on Remote Sensing, Jeju, Oct. 27-29: 340-343
18 Froidefond, J. M., L. Gardel, D. Guiral, M. Parra, and J. -F. Ternon, 2002. Soectrak remote sensing reflectance of coastal waters in French Guiana under the Amazon influence, Remote Sensing of Environment, 80: 225-232   DOI   ScienceOn
19 안유환, 2000. 해색 원격탐사를 위한 원격반사도 및 수출광 모델의 개발, 대한원격탐사학회지, 16(3): 243-260
20 Joseph, J., 1950. Untersuchungen ber Ober- und Unterlichtmessungen in Meere und ber ihren Zusammenhang mit Durchsichtigkeits messungen, Deut, Hydrograph., 3: 324-335   DOI
21 Gordon, H. R. and O. B. Brown 1975. A multiphase monte carlo technique for simulation of radiative transfer, J. Quant, Spectrosc. Radiat. Transfer, 15: 419-422   DOI   ScienceOn