• Title/Summary/Keyword: Occupational health and safety

Search Result 2,950, Processing Time 0.025 seconds

Development of recognition system of field shape and tillage characteristics for autonomous tractor (자율 주행 트랙터를 위한 포장형상 및 경운작업특성 인식시스템 개발)

  • Seo, Il-Hwan;Seo, Dong-Hyun;Kim, Man-Soo;Chung, Sun-Ok;Kim, Ki-Dae
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.2
    • /
    • pp.343-347
    • /
    • 2011
  • Precise traveling and tillage operation using an autonomous tractor is difficult with the data from the Geographic Information System(GIS) because it does not include the data of the width and inclination of the field to work. The minimum turing radius of the tractor could be different from the value presented by the tractor maker due to the moisture content of the field soil or operators' skill. Two programs were developed to process data obtained with the tillage path measuring system: one for recognizing coordinates of the 4 field corners, and the other for recognizing the minimum turning radius of the tractor.

A Study on Fault Detection for Crane Handler by Observation Techniques (옵저버를 이용한 크레인 작업자의 에러 검출에 관한 연구)

  • Kim, Hwan-Seong;Kim, Seoung-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.493-498
    • /
    • 2005
  • In this paper, we deal with on observer design for detecting the human faults in container crane operation. First we propose an observer for detecting the human faults and show the existing condition for the observer. In this case, we assume that the human faults can be considered ad a careless mistake during the crane operation. In simulation, we used the previous results for human work model and design the observer for the human work model. As a simulation results with human faults, the proposed observer can detected the human faults perfectly, thus the efficiency of proposed observer is shown.

  • PDF

Prediction of Explosion Limit of Flammable Mixture by Using the Heat of Combustion (연소열을 이용한 가연성 혼합물의 폭발한계 예측)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.19-25
    • /
    • 2006
  • Explosion limit is one of the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosion limits are used to classify flammable materials according to their relative flammability. Such a classification is important for the safe handling, storage, transportation of flammable substances. In this study, the lower explosion limits(LEL) of the flammable mixtures predicted with the appropriate use of the vapor composition and the heat of combustion of the individual components which constitute mixture. The values calculated by the proposed equations were a good agreement with literature data within a few percent. From a given results, It is to be hoped that this methodology will contribute to the estimation of the explosive properties of flammable mixtures with improved accuracy and the broader application for other flammable substances.

  • PDF

Prediction of Autoignition Temperature of n-Propanol and n-Octane Mixture (n-Propanol과 n-Octane 혼합물의 최소자연발화온도의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.21-27
    • /
    • 2013
  • The lowest values of the AITs(Autoignition temperatures) in the literature were normally used fire and explosion protection. In this study, the AITs of n-Propanol+n-Octane system were measured from ignition delay time(time lag) by using ASTM E659 apparatus. The AITs of n-Propanol and n-Octane which constituted binary systems were $435^{\circ}C$ and $218^{\circ}C$, respectively. The experimental ignition delay time of n-Propanol+n-Octane system were a good agreement with the calculated ignition delay time by the proposed equations with a few A.A.D.(average absolute deviation).

Prediction of Lower Explosion Limits of Binary Liquid Mixtures by Means of Solution Thermodynamics (용액열역학에 의한 2성분계 혼합물의 폭발하한계 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.20-25
    • /
    • 2009
  • Low explosion limits of flammable liquid mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and activity coefficient models. In this paper, Raoult's law, van Laar equation and Wilson equation are shown to be applicable for the prediction of the lower explosion limits for ethylacetate+ethanol and ethanol+toluene systems. The calculated values based on Raoult's law were found to be better than those based on van Laar and Wilson equations.

  • PDF

The Method of Improvement by Illuminance Measurement of the CT Scan Room in a General Hospital Radiology (종합병원 영상의학과 CT 검사실의 조도 측정에 의한 향상 방안)

  • Kweon, Dae-Cheol;Yang, Sung-Hwan;Kang, Young-Sig
    • Journal of the Korean Institute of Plant Engineering
    • /
    • v.23 no.4
    • /
    • pp.51-56
    • /
    • 2018
  • Computed tomography (CT) scan room in the department of radiology is very necessary to maintain pleasant and proper illuminance to relieve fatigue and inconvenience because it affects the work environment to the radiologist. Accordingly, this paper describes the method for measurement of illuminance that exposed to an environmental elements in a CT scan room of the hospital. Therefore, the purpose of this paper is to propose an optimal environment of CT scan room based on the measurement of illuminance. In addition, the 5 point method by KS C7612 was applied to measure the illuminance with illuminometer (Unfors xi light probe) in the CT scan room. In result of this paper, minimum value and maximum value of illuminance in the CT scan room was measured 212.7 lux and 354.8 lux, respectively. The illuminance of CT scan room was lower than KS A 3011. Finally, the work environment in CT scan room should provide higher illuminance for the comfortable environment of radiologists and patients.

Measurement and Prediction of Autoignition Temperature of n-Hexanol+p-Xylene Mixture (노말헥산올과 파라자일렌 혼합물의 최소자연발화온도 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.48-55
    • /
    • 2016
  • The autoignition temperature (AIT) of a material is the lowest temperature at which the material will spontaneously ignite. The AIT is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs of n-hexanol+p-xylene system by using ASTM E659 apparatus. The AITs of n-hexanol and p-xylene system which constituted binary system were $275^{\circ}C$ and $557^{\circ}C$, respectively. The experimental AITs of n-hexanol+p-xylene system system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D.(average absolute deviation).

The Prediction of Lower Explosion Limit of n-Hexadecane (n-Hexadecane의 폭발하한계 예측)

  • Ha, Dong-Myeong;Park, Sang-Hun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.163-163
    • /
    • 2013
  • 최근의 수많은 산업 현장에서 취급하고 있는 각종 화학물질은 잠재적 위험성이 크므로 보관, 수송 및 취급할 때 특별한 주의가 필요하다. 공정 설계 시 정확하지 않은 폭발한계를 사용함으로서 사고가 유발되는 경우가 많다. 따라서 사업장에서 사용되고 있는 화학물질의 화재 및 폭발 특성치인 인화점, 폭발한계 등을 정확히 파악하는 것은 중요하다. 인화점은 하부인화점과 상부인화점으로 나누고 있고 있으며, 인화점은 가연성 액체의 화재 위험성을 나타내는 지표로써, 가연성액체의 액면 가까이서 인화할 때 필요한 증기를 발산하는 액체의 최저온도 또는 점화원 존재시 인화가 일어날 수 있는 최저온도, 그리고 가연성증기의 포화증기압이 공기와 혼합기체의 폭발한계 하한농도와 같게 되는 온도로 정의한다. 폭발한계는 발화원이 존재할 때 가연성가스와 공기가 혼합하여 일정 농도범위 내에서만 연소가 이루어지는 혼합범위를 말한다. 본 연구에서는 실제 공정에서 사용되고 있는 n-Hexadecane의 인화점을 측정하여 이를 기존 문헌값과 비교 하였고, 측정된 인화점을 이용하여 폭발한계를 예측하였다. 예측된 폭발한계를 여러 문헌에 제시된 자료과 비교하여 공정안전에 타당한 자료를 제시하였다. 본 연구는 n-Hexadecane을 취급하는 공정에서 안전 확보의 중요한 지침 마련과 MSDS D/B의 최신화에 유용한 정보를 제공하는데 목적이 있다.

  • PDF

Measurement and Prediction of Autoignition Temperature of n-Butanol+p-Xylene Mixture (노말부탄올과 파라자일렌 혼합물의 최소자연발화온도 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • The autoignition temperature (AIT) of a substance is the lowest temperature at which the vapor ignites spontaneously from the heat of the environment. The AIT is important index for the safe handling of flammable liquids which constitute the solvent mixtures in the process. This study measured the AITs of n-butanol+p-xylene mixture by using ASTM E659 apparatus. The AITs of n-butanol and p-xylene which constituted binary system were $340^{\circ}C$ and $557^{\circ}C$, respectively. The experimental AITs of n-butanol+p-xylene mixture were a good agreement with the calculated AITs by the proposed equations with a few A.A.D.(average absolute deviation).

Experimental Determination of Closed Cup Flash Point of Binary Flammable Solutions, 2-Propanol+Propionic acid and n-Hexanol+Formic Acid Solutions (가연성 이성분계 용액인 2-Propanol+Propionic acid 와 n-Hexanol+Formic acid 용액의 밀폐식 인화점의 실험적 결정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.18-24
    • /
    • 2015
  • The flash point is one of the most important indicators of the flammabiliy of liquid solutions. The flash point is the lowest temperature at which there is enough concentration of flammable vapor to form an ignitable mixture with air. In this study the flash points of binary flammable solutions, 2-propanol+propionic acid and n-hexanol+formic acid systems, were measured using Seta flash closed cup tester. Particularly n-hexanol+formic acid system exhibited minimum flash point behavior. The measured values were compared with the calculated values using Raoult's law and optimization method. The calculated data by optimization method described the measured values more effectively than those calculated by Raoult's law.