• Title/Summary/Keyword: Occupational asthma

Search Result 89, Processing Time 0.027 seconds

A Study on Removal of Abietic Acid Using Plasma (플라스마를 이용한 Abietic Acid의 제거에 관한 연구)

  • Kim, Ga-Young;Kim, Da-Seul;Kim, Dong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.788-794
    • /
    • 2020
  • This study was measured and analyzed from January to November 2019 to confirm the effect that Abietic acid, an asthma-causing substance, which can be exposed to workers in the electronics industry, is removed by plasma treatment. The experiment was carried out using a solder wire and natural rosin. Air at temperatures of 250℃, 300℃, and 350℃ was collected with a glass fiber filter paper using an air sampler for 10 minutes at a flow rate of 2ℓ/min. An analysis of the collected samples was performed by pretreatment with methyl alcohol and quantitative analysis by high performance liquid chromatography (HPLC). This procedure confirmed that abietic acid was generated in both natural rosin and solder wires, and the quantum of abietic acid increased as the treatment temperature increased. The amount of abietic acid was higher in natural rosin than solder wire. As a result of plasma treatment, a removal efficiency of about 92% or more was confirmed in natural rosin. A peak of abietic acid was not detected in the solder wire. Therefore, a removal efficiency of 100% was confirmed. This study, confirmed that abietic acid, an asthma-trigger can be generated in solder wire and natural rosin, and can be removed by plasma treatment.

A Suggested Air Sampling Strategy for Bioaerosols in Daycare Center Settings (어린이활동공간에서의 바이오에어로졸 포집 전략)

  • Jo, JungHeum;Park, Jun-sik;Kim, Sung-Yeon;Kwon, Myung hee;Kim, Ki Youn;Choi, Jeong-Hak;Seo, SungChul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.3
    • /
    • pp.324-333
    • /
    • 2016
  • Objectives: We aimed to compare the sampling performance of different flow-based impactor samplers for collecting fungal spores and bacteria and to explore the association of the level of bioaerosols with activity patterns of occupants in daycare center settings. Methods: For comparison of sampling performance, two different flow-based samplers (greater than 100 L/min or not) were selected; a low flow-based sampler (one-stage Andersen sampler) and two high flow-based samplers (DUO SAS SUPER 360 sampler, BUCK bio-culture sampler). We collected airborne mold and bacteria in 30 daycare centers with various levels of contaminated air. Three repeat samplings per each sampler were performed. Mold and bacteria were grown for 96 hours at $25{\pm}1^{\circ}C$ and 48 hours at $35{\pm}1^{\circ}C$, respectively. The Andersen and SAS samplers were used for investigating the association between the level of bioaerosols and the activity patterns of occupants in daycares. Particular matters 10($PM_{10}$), temperature, and relative humidity were monitored as well. Samplings were carried out with one-hour interval from 9 to 5 O'clock. For statistical comparisons, Kruskal-Wallis test, Wilcoxon's signed rank test, and multiple regression analysis were carried out. Results: The airborne level of molds by the low flow-based sampler were significantly higher than that of high flow-based samplers (indoor, P=0.037; outdoor, P=0.041). However, no statistical difference was observed in the airborne level of bacteria by each sampler. Also the level of bioaerosols varied by the time, particularly with different activity patterns in daycare centers. The higher level of mold and bacteria were observed in play time in indoor. Similarly, the concentrations of $PM_{10}$ were significantly associated with the level of bioaerosols (P<0.05). Conclusions: Our findings indicate that the flow rate of sampler, rather than total air volume, could be able to affect the results of sampling. Also, the level of airborne mold and bacteria vary behavior patterns of occupants in indoor of daycare settings. Therefore, different samplers with other flow rate may be selected for mold or bacteria sampling, and activity patterns should be considered for bioaerosol sampling as well.

Development of an Oil Mist Collector Equipped with Centrifugal De-oiling System (원심력 필터 재생기능을 갖춘 오일 미스트 여과 집진장치 개발)

  • Kim, Tae-Hyeung;Seo, Jeoung-Yoon;Ha, Hyun-Chul;Kim, Jong-Cheul;Cho, Jin-Ho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.166-175
    • /
    • 2005
  • Health effects associated with metal working fluid (MWF) exposures include dermatitis, respiratory disease, hypersensitive pneumonitis, and asthma. Frequently, occupational exposures to MWFs are controlled by ventilating an enclosure with an air cleaning unit that includes a fan preceded by various kinds of filtration. There are several kinds of air cleaning units used in machining centers. But the associated troubles have hindered from efficiently using these devices. The main problem is the relatively short period of filter replacement. The reason is that the air cleaning units usually do not have the de-oiling systems, thus leading the earlier clogging of filters and reducing the flow rate of hood. Thus, the first stage of study was conducted to overcome this problem by developing the new oil mist collector equipped with the easy de-oiling system. The principle of de-oiling is that the centrifugal force generated by spinning the drum covered by filter fabric separates oils from the filter fabric. It would be very similar to the spin-dry laundry. By adopting this de-oiling technique, the problems associated with the conventional oil mist collectors could be solved. Several tests/analyses were performed to make the lab-scale oil mist collector. The collection efficiencies and the de-oiling efficiencies of commercially available filter fabrics were tested. Subsequently, the endurance test were conducted by observing SEM photos of filter fabrics and measuring tensile strength/expansion coefficient after spinning the filter drum for 20 minutes at the different rotation speeds. By doing these experiments, the most appropriate filter fabric and rotation speed/duration were selected. Finally, the new oil mist collector was designed. In the near future, this device must be tested in the real machining center.

Chemical Composition of Painting Materials used in Some Korean Shipyards (조선업의 도장 작업시 취급하는 도료중 유해물질 성분에 관한 연구)

  • Shin, Yong Chul;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.156-172
    • /
    • 1999
  • Potential chemical hazards encountered in painting operation of four shipyards and a ship-repair shop were investigated through the material safety data sheets (MSDS). Material safety data sheets (MSDS) for 307 paints, 50 thinners and 34 binders were collected and reviewed. It was shown that various organic solvents such as aromatic hydrocarbons, aliphatic hydrocarbons, ketones, alcohols, glycols, glycol ether acetates and esters were contained in painting materials. Of these solvents, xylene was found in the largest number of painting materials. sixty percent of the thinners contained xylene in the contents of 20-100%. Other most frequently found solvents were 1-methoxypropanol, 1-methoxypropyl acetate, n-butanol, methyl isobutyl ketone, toluene, isopropanol, and n-butyl acetate, etc. Glycol ethers such as 2-methoxyethanol (2-ME), 2-methoxyethyl acetate (2-MEA), 2-ethoxyethanol (2-EE), 2-ethoxyethyl acetate (2-EEA) and 2-butoxyethanol (2-BA) were regarded as having the potential to cause adverse reproductive effects, embryotoxic effect and hematotoxic effects, and were found in some epoxy panting materials. Coal tar pitch was included in some paints(13%) where polynuclear aromatic hydrocarbons (PAHs) could be contaminated. Inorganic pigments such as lead chromate and zinc potassium chromate were found in some paints (8%). The epoxy resin based paints, which may contain isocyanates such as toluene diisocyanates and hexamethylene diisocyanates causing potential sensitization and asthma to upper respiratory organ, were mostly used in the shipyards. The constituents in the MSDS were significantly different from the results analyzed using gas chromatography/mass detector: minor constituents or impurities were omitted in many MSDS. In conclusion, xylene was the most frequent organic solvent in painting materials, and glycol ethers, including 2-ME, 2-MEA, 2-EE, 2-EEA and 2-BA, were found some products. Also, painting workers may be exposed to PAHs, lead, chromate, isocyanates, organic tin and other various chemicals. The compositions of chemicals in painting materials were variable significantly, and the hazards were changed. These facts should be considered in environmental monitoring and control of the hazards.

  • PDF

Moist and Mold Exposure is Associated With High Prevalence of Neurological Symptoms and MCS in a Finnish Hospital Workers Cohort

  • Hyvonen, Saija;Lohi, Jouni;Tuuminen, Tamara
    • Safety and Health at Work
    • /
    • v.11 no.2
    • /
    • pp.173-177
    • /
    • 2020
  • Background: Indoor air dampness microbiota (DM) is a big health hazard. Sufficient evidence exists that exposure to DM causes new asthma or exacerbation, dyspnea, infections of upper airways and allergic alveolitis. Less convincing evidence has yet been published for extrapulmonary manifestations of dampness and mold hypersensitivity syndrome). Methods: We investigated the prevalence of extrapulmonary in addition to respiratory symptoms with a questionnaire in a cohort of nurses and midwives (n = 90) exposed to DM in a Helsinki Obstetric Hospital. The corresponding prevalence was compared with an unexposed cohort (n = 45). Particular interest was put on neurological symptoms and multiple chemical sensitivity. Results: The results show that respiratory symptoms were more common among participants of the study vs. control cohort, that is, 80 vs 29%, respectively (risk ratio [RR]: 2.56, p < 0.001). Symptoms of the central or peripheral nervous system were also more common in study vs. control cohort: 81 vs 11% (RR: 6.63, p < 0.001). Fatigue was reported in 77 vs. 24%, (RR: 3.05, p < 0.001) and multiple chemical sensitivity in 40 vs. 9%, (RR: 3.44, p = 0.01), the so-called "brain fog", was prevalent in 62 vs 11% (RR: 4.94, p < 0.001), arrhythmias were reported in 57 vs. 2.4% (RR: 19.75, p < 0.001) and musculoskeletal pain in 51 vs 22% (RR: 2.02, p = 0.02) among participants of the study vs. control cohort, respectively. Conclusion: The results indicate that the exposure to DM is associated with a plethora of extrapulmonary symptoms. Presented data corroborate our recent reports on the health effects of moist and mold exposure in a workplace.

A Case of Hypersensitivity Pneumonitis in an Automobile Paint Sprayer (자동차 페인트 도장공에서 발생한 과민성 폐렴 1예)

  • Oh, Mi Na;Cho, Myoung Jin;Baek, Hoon Ki;Cho, Ki Sung;Kang, Ji Hoon;Kim, Young;Kwak, Jin Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.65 no.6
    • /
    • pp.541-545
    • /
    • 2008
  • Hypersensitivity pneumonitis (HP) is an immunologically-mediated disease resulting from repeated exposure to sensitizing agents, such as organic dusts or chemicals. Isocyanate is a volatile and highly reactive chemical that is extensively used in the manufacturing of automobiles, upholstery, and polyurethane foam. Occupational respiratory diseases associated with isocyanate, such as bronchial asthma, are well-known. It is thought that HP is one of the rare diseases induced by isocyanate with a very low frequency worldwide. We report a case of HP in an automobile painting sprayer which appeared to be associated with isocyanate.

Cohort Study for Investigation of the Causes in Agricultural Injuries and Diseases (농작업재해의 원인구명 및 코호트 구축방안)

  • Lim, Hyun-Sul
    • Journal of agricultural medicine and community health
    • /
    • v.31 no.2
    • /
    • pp.119-144
    • /
    • 2006
  • The Korea rural health study, a large prospective cohort study, the objectives of this study are exploration for potential causes of agricultural injuries and diseases among farmers. Current medical research suggests that they may have higher rates of some traumatic injuries, pesticide poisoning, infectious diseases, musculoskeletal diseases, asthma and other respiratory diseases. This study is designed to identify occupational, lifestyle, and environmental factors of workplace that may affect the rate of diseases in farming population. Round 1, initial cohort recruitment, will begin in 2006 and conclude in 2009. Round 2, follow-up will begin in 2010 and conclude in 2014. Approximately 54,000 persons will be selected to study population. Nested case-control studies and case-crossover studies will be conducted for getting to the bottom of agriculture-related diseases. Recruitment and follow-up are conducted in collaboration with multi-centers. As data on the exposures and health outcomes of this study population are collected and analyzed in 2014. This study will be evaluated by public health experts for effort, achievement, adequacy of performance, efficacy, process of study and so on. The author expects that this cohort study may reduce agricultural injuries and diseases and will provide information that agricultural workers can use in making decisions about their health. Also, this study will be significant basis for strengthening the competitiveness of agriculture in Korea.

  • PDF

Review of Health Effects Caused by Chloromethylisothiazolinone (CMIT) and Methylisothiazolinone (MIT) - Focusing on Humidifier Disinfectant-associated Lung Injury (HDLI) - (Chloromethylisothiazolinone (CMIT)과 Methylisothiazolinone (MIT)의 건강영향에 대한 고찰 - 가습기 살균제 폐 손상을 중심으로 -)

  • Park, Dong-Uk;Kim, Jiwon;Ryu, Seung-Hun;Park, Jihoon;Kwon, Jung-Hwan;Lee, So-Yeon;Park, Soyoung
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.3
    • /
    • pp.312-323
    • /
    • 2020
  • Objective: This study aimed to summarize the physiochemical properties, toxicity, and legal regulation of chloromethylisothiazolinone (CMIT) and/or methylisothiazolinone (MIT), review the health effects caused by exposure to CMIT/MIT, and evaluate the individual association of lung injury with the use of humidifier disinfectants (HD) containing a mixture of CMIT and MIT. Method: A literature review was conducted by searching keywords such as CMIT, MIT, health effect, dermatitis, asthma, and lung injury, either singly or combined. Results: Both CMIT and/or MIT were found to be associated with the development of several types of adverse health effects. In particular, respiratory diseases including asthma, nasal symptoms, cough, and rhinitis were caused by the use of products including CMIT or/and MIT. The mixture of CMIT/MIT has been banned in cosmetics. As of the end of 2017, nine patients who were confirmed to have HD associated lung injury (HDLI) were found to have used only an HD brand containing CMIT and MIT. Their responses regarding the name of the HD used could be trustworthy based on the short duration of HD use (less than six months) before the onset of HDLI and frequent use of HD per day. Conclusion: According to the toxicity and HDLI cases, the use of HD containing CMIT and /or MIT can cause fatal lung injury. Further study with manufacturers' assistance is necessary in order to obtain more clear evidence on the causal relationship since HDLI cases are being reported continuously.

Investigation into Air Pollution in Car Shipping Workshop in Pyeongtaek Port (자동차 선적작업장의 공기오염 실태조사)

  • Kim, Ji-Ho;Won, Jong-Uk;Kim, Chi-Nyon;Roh, Jaehoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.44-53
    • /
    • 2006
  • This study purposed to investigate air pollution in car shipping yards and, for this purpose, we selected an outdoor open-air yard and an indoor ramp into the ship and measured the concentrations of sulfur dioxide, nitrogen dioxide, carbon monoxide, PM10, PM2.5 and heavy metals in the air. The results of this study are as follows. No significant difference was observed in temperature and humidity between the outdoor and indoor workshop, and the average air flow was 0.52 m/s in the indoor workshop, which is higher than 0.19 m/s in the outdoor workshop(p<0.01). The average concentrations of sulfur dioxide, nitrogen dioxide, carbon monoxide, PM10 and PM2.5 according to workplace were 0.03 ppm(${\pm}0.01$), 0.03 ppm(${\pm}0.01$), 0.46 ppm(${\pm}0.22$), $39.44{\mu}g/m^3$(${\pm}2.45$) and $5.45{\mu}g/m^3$(${\pm}1.15$) respectively in the outdoor workshop, and 0.15 ppm(${\pm}0.05$), 0.22 ppm(${\pm}0.06$), 8.85 ppm(${\pm}3.35$), $236.39{\mu}g/m^3$(${\pm}58.21$) and $152.43{\mu}g/m^3$(${\pm}35.42$) respectively in the indoor workshop. Thus, the concentrations of gaseous substances in the indoor workshop were 4.9-19.2 times higher than those in the outdoor workshop, and the concentrations of fine dusts were 5.9-27.9 times higher(p<0.01). In addition, according to the result of investigating pollutant concentrations according to displacement and the number of car loaded when shipping gasoline cars into the ship, no significant relation between the number of cars loaded and pollutants was observed in shipping passenger cars, but the concentrations of nitrogen dioxide and carbon monoxide got somewhat higher with the increase of the number of cars loaded(p<0.05). In addition, the concentrations of nitrogen dioxide, carbon monoxide, PM10 and PM2.5 in the air were significantly higher when shipping recreational vehicles, the displacement of which is larger than passenger cars, than when shipping passenger cars(p<0.01). On the other hand, the average heavy metal concentrations of the air in indoor workshop were: lead $-0.05{\mu}g/m^3$(${\pm}0.10$); chromium $-0.90{\mu}g/m^3$(${\pm}0.18$); zinc $-0.38{\mu}g/m^3$(${\pm}0.24$); copper $-0.18{\mu}g/m^3$(${\pm}0.22$); and manganese and cadmium not detected. In addition, the complaining rates of 'asthma,' a major symptom of chronic respiratory diseases, were 18.5% and 22.5% respectively in indoor workers and outdoor workers. Thus the rate was somewhat higher in indoor workers but the difference was not statistically significant. The complaining rates of 'chronic cough' and 'chronic phlegm' were very low and little different between indoor and outdoor workers. The results of this study show that the reason for the higher air pollution in indoor than in outdoor workshop is incomplete combustion of fuel due to sudden start and over-speed when cars are driven inside the ship. In order to prevent high air pollution, efficient management measures should be taken including the observance of the optimal speed, the improvement of old ships and the installation of efficient ventilation system.

Evaluation of Atopy and Its Possible Association with Indoor Bioaerosol Concentrations and Other Factors at the Residence of Children (초등학생 가정을 대상으로 한 바이오에어로졸 노출과 아토피와의 연관성 평가)

  • Ha, Jin-Sil;Jung, Hea-Jung;Byun, Hyae-Jeong;Yoon, Chung-Sik;Kim, Yang-Ho;Oh, In-Bo;Lee, Ji-Ho;Ha, Kwon-Chul
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.6
    • /
    • pp.406-417
    • /
    • 2011
  • Objectives: Exposure to bioaerosols in the indoor environment could be associated with a variety adverse health effects, including allergic disease such atopy. The objectives of this study were to assess children's exposure to bioaerosol in home indoor environments and to evaluate the association between atopy and bioaerosol, environmental, and social factors in Ulsan, Korea. Methods: Samples of viable airborne bacteria and fungi were collected by impaction onto agar plates using a Quick Take TM 30 and were counted as colony forming units per cubic meter of air (CFU/$m^3$). Bioaerosols were identified using standard microbial techniques by differential stains and/or microscopy. The environmental factors and possible causes of atopy based on ISAAC (International Study of Allergy and Asthma in Childhood) were collected by questionnaire. Results: The bioaerosol concentrations in indoor environments showed log-normal distribution (p < 0.01). Geometric mean (GM) and geometric standard deviation (GSD) of airborne bacteria and fungi in homes were 189.0 (2.5), 346.1(2.0) CFU/$m^3$, respectively. Indoor fungal levels were significantly higher than those of bacteria (p < 0.001). The concentration of airborne bacteria exceeded the limit recommended by the Korean Ministry of Environment, 800 CFU/$m^3$, in three out of 92 samples (3.3%) from 52 homes. The means of indoor to outdoor ratio (I/O) for airborne bacteria and fungi were 8.15 and 1.13, respectively. The source of airborne bacteria was not outdoors but indoors. GM of airborne bacteria and fungi were 217.6, 291.8 CFU/$m^3$ in the case's home and 162.0, 415.2 CFU/$m^3$ in the control's home respectively. The difference in fungal distributions between case and control were significant (p = 0.004) and the odds ratio was 0.996 (p = 0.027). Atopy was significantly associated with type of house (odds ratio = 1.723, p = 0.047) and income (odds ratio = 1.891, p = 0.041). Some of the potential allergic fungal genera isolated in homes were Cladosporium spp., Botrytis spp., Aspergillus spp., Penicillium spp., and Alternatia spp. Conclusions: These results suggest that there this should be either 'was little' meaning 'basically no significant association was found' or 'was a small negative' mean that an association was found but it was minor. It's a very improtant distinction. Association between airborne fungal concentrations and atopy and certain socioeconomic factors may affect the prevalence of childhood atopy.