• Title/Summary/Keyword: Occluded objects

Search Result 99, Processing Time 0.02 seconds

Annealed Hopfield Neural Network for Recognizing Partially Occluded Objects (부분적으로 가려진 물체 인식을 위한 어닐드 홉필드 네트워크)

  • Yoon, Suk-Hun
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.2
    • /
    • pp.83-94
    • /
    • 2021
  • The need for recognition of partially occluded objects is increasing in the area of computer vision applications. Occlusion causes significant problems in identifying and locating an object. In this paper, an annealed Hopfield network (AHN) is proposed for detecting threat objects in passengers' check-in baggage. AHN is a deterministic approximation that is based on the hybrid Hopfield network (HHN) and annealing theory. AHN uses boundary features composed of boundary points and corner points which are extracted from input images of threat objects. The critical temperature also is examined to reduce the run time of AHN. Extensive computational experiments have been conducted to compare the performance of the AHNwith that of the HHN.

A Shape Matching Algorithm for Occluded Two-Dimensional Objects (일부가 가리워진 2차원 물체의 형상 정합 알고리즘)

  • 박충수;이상욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1817-1824
    • /
    • 1990
  • This paper describes a shape matching algorithm for occluded or distorted two-dimensional objects. In our approach, the shape matchin is viewed as a segment matching problem. A shape matching algorithm, based on both the stochastic labeling technique and the hypothesis generate-test paradigm, is proposed, and a simple technique which performs the stochastic labeling process in accordance with the definition of consisten labeling assignment without requiring an iterative updating process of probability valiues is also proposed. Several simulation results show that the proposed algorithm is very effective when occlusion, scaling or change of orientation has occurred in the object.

  • PDF

Reasoning Occluded Objects in Indoor Environment Using Bayesian Network for Robot Effective Service (로봇의 효과적인 서비스를 위해 베이지안 네트워크 기반의 실내 환경의 가려진 물체 추론)

  • Song Youn-Suk;Cho Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.1
    • /
    • pp.56-65
    • /
    • 2006
  • Recently the study on service robots has been proliferated in many fields, and there are active developments for indoor services such as supporting for elderly people. It is important for robot to recognize objects and situations appropriately for effective and accurate service. Conventional object recognition methods have been based on the pre-defined geometric models, but they have limitations in indoor environments with uncertain situation such as the target objects are occluded by other ones. In this paper we propose a Bayesian network model to reason the probability of target objects for effective detection. We model the relationships between objects by activities, which are applied to non-static environments more flexibly. Overall structure is constructed by combining common-cause structures which are the units making relationship between objects, and it makes design process more efficient. We test the performance of two Bayesian networks for verifying the proposed Bayesian network model through experiments, resulting in accuracy of $86.5\%$ and $89.6\%$ respectively.

Segment Based Recognition of 2-D Partially Occluded Objects (Segment에 근거한 부분적으로 가려진 2차원 물체인식)

  • 김성로;황순자;정재영;김문현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.119-128
    • /
    • 1994
  • In this paper we propose a new method for the recognition of 2-D partially occluded objects. The border of the object is transformed to a curve in arc length-accumulated interior angle plane. The transformed curve of an image is partitioned so that each segment is bounded by the concave interior angles. In order to tolerate shape distortion due to the polygonal approximation of the boundary of the object a group of feature points of the input image are matched with those of model views. The estimation method for positions and orientations of the identified objects objects is presented.

  • PDF

Enhanced Reconstruction of Heavy Occluded Objects Using Estimation of Variance in Volumetric Integral Imaging (VII) (Volumetric 집적영상에서 분산 추정을 이용한 심하게 은폐된 물체의 향상된 복원)

  • Hwang, Yong-Seok;Kim, Eun-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.6
    • /
    • pp.389-393
    • /
    • 2008
  • Enhanced reconstruction of heavy occluded objects was represented using estimation of variance in computational integral imaging. The system is analyzed to extract information of enhanced reconstruction from an elemental images set. To obtain elemental images with enhanced resolution, low focus error, and large depth of focus, synthetic aperture integral imaging (SAII) utilizing a digital camera has been adopted. The focused areas of the reconstructed image are varied with the distance of the reconstruction plane. When an occluded object is occluded heavily, an occluded object can not be reconstructed by removing the occluding object. To obtain reconstruction of the occluded object by remedying the effect of heavy occlusion, the statistical technique has been adopted.

A Novel Approach for Object Detection in Illuminated and Occluded Video Sequences Using Visual Information with Object Feature Estimation

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.110-114
    • /
    • 2015
  • This paper reports a novel object-detection technique in video sequences. The proposed algorithm consists of detection of objects in illuminated and occluded videos by using object features and a neural network technique. It consists of two functional modules: region-based object feature extraction and continuous detection of objects in video sequences with region features. This scheme is proposed as an enhancement of the Lowe's scale-invariant feature transform (SIFT) object detection method. This technique solved the high computation time problem of feature generation in the SIFT method. The improvement is achieved by region-based feature classification in the objects to be detected; optimal neural network-based feature reduction is presented in order to reduce the object region feature dataset with winner pixel estimation between the video frames of the video sequence. Simulation results show that the proposed scheme achieves better overall performance than other object detection techniques, and region-based feature detection is faster in comparison to other recent techniques.

3D Visualization of Partially Occluded Objects Using Axially Distributed Image Sensing With a Wide-Angle Lens

  • Kim, Nam-Woo;Hong, Seok-Min;Lee, Hoon Jae;Lee, Byung-Gook;Lee, Joon-Jae
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.517-522
    • /
    • 2014
  • In this paper we propose an axially distributed image-sensing method with a wide-angle lens to capture the wide-area scene of 3D objects. A lot of parallax information can be collected by translating the wide-angle camera along the optical axis. The recorded wide-area elemental images are calibrated using compensation of radial distortion. With these images we generate volumetric slice images using a computational reconstruction algorithm based on ray back-projection. To show the feasibility of the proposed method, we performed optical experiments for visualization of a partially occluded 3D object.

Modified YOLOv4S based on Deep learning with Feature Fusion and Spatial Attention (특징 융합과 공간 강조를 적용한 딥러닝 기반의 개선된 YOLOv4S)

  • Hwang, Beom-Yeon;Lee, Sang-Hun;Lee, Seung-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.31-37
    • /
    • 2021
  • In this paper proposed a feature fusion and spatial attention-based modified YOLOv4S for small and occluded detection. Conventional YOLOv4S is a lightweight network and lacks feature extraction capability compared to the method of the deep network. The proposed method first combines feature maps of different scales with feature fusion to enhance semantic and low-level information. In addition expanding the receptive field with dilated convolution, the detection accuracy for small and occluded objects was improved. Second by improving the conventional spatial information with spatial attention, the detection accuracy of objects classified and occluded between objects was improved. PASCAL VOC and COCO datasets were used for quantitative evaluation of the proposed method. The proposed method improved mAP by 2.7% in the PASCAL VOC dataset and 1.8% in the COCO dataset compared to the Conventional YOLOv4S.

Resolution-enhanced Reconstruction of 3D Object Using Depth-reversed Elemental Images for Partially Occluded Object Recognitionz

  • Wei, Tan-Chun;Shin, Dong-Hak;Lee, Byung-Gook
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.139-145
    • /
    • 2009
  • Computational integral imaging (CII) is a new method for 3D imaging and visualization. However, it suffers from seriously poor image quality of the reconstructed image as the reconstructed image plane increases. In this paper, to overcome this problem, we propose a CII method based on a smart pixel mapping (SPM) technique for partially occluded 3D object recognition, in which the object to be recognized is located at far distance from the lenslet array. In the SPM-based CII, the use of SPM moves a far 3D object toward the near lenslet array and then improves the image quality of the reconstructed image. To show the usefulness of the proposed method, we carry out some experiments for occluded objects and present the experimental results.