• Title/Summary/Keyword: Obstacles control

Search Result 576, Processing Time 0.027 seconds

Development of Autonomous Algorithm for Boat Using Robot Operating System (로봇운영체제를 이용한 보트의 자율운항 알고리즘 개발)

  • Jo, Hyun-Jae;Kim, Jung-Hyeon;Kim, Su-Rim;Woo, Ju-Hyun;Park, Jong-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.121-128
    • /
    • 2021
  • According to the increasing interest and demand for the Autonomous Surface Vessels (ASV), the autonomous navigation system is being developed such as obstacle detection, avoidance, and path planning. In general, autonomous navigation algorithm controls the ship by detecting the obstacles with various sensors and planning path for collision avoidance. This study aims to construct and prove autonomous algorithm with integrated various sensor using the Robot Operating System (ROS). In this study, the safety zone technique was used to avoid obstacles. The safety zone was selected by an algorithm to determine an obstacle-free area using 2D LiDAR. Then, drift angle of the ship was controlled by the propulsion difference of the port and starboard side that based on PID control. The algorithm performance was verified by participating in the 2020 Korea Autonomous BOAT (KABOAT).

A Study on Collision Avoidance Algorithm Based on Obstacle Zone by Target (Obstacle Zone by Target 기반 선박 충돌회피 알고리즘 개발에 관한 연구)

  • Chan-Wook Lee;Sung-Wook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.106-114
    • /
    • 2024
  • In the 21st century, the rapid development of automation and artificial intelligence technologies is driving innovative changes in various industrial sectors. In the transportation industry, this is evident with the commercialization of autonomous vehicles. Moreover research into autonomous navigation technologies is actively underway in the aviation and maritime sectors. Consequently, for the practical implementation of autonomous ships, an effective collision avoidance algorithm has become a crucial element. Therefore, this study proposes a collision avoidance algorithm based on the Obstacle Zone by Target(OZT), which visually represents areas with a high likelihood of collisions with other ships or obstacles. The A-star algorithm was utilized to represent obstacles on a grid and assess collision risks. Subsequently, a collision avoidance algorithm was developed that performs fuzzy control based on calculated waypoints, allowing the vessel to return to its original course after avoiding the collision. Finally, the validity of the proposed algorithm was verified through collision avoidance simulations in various encounter scenarios.

Cooperative behavior and control of autonomous mobile robots using genetic programming (유전 프로그래밍에 의한 자율이동로봇군의 협조행동 및 제어)

  • 이동욱;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1177-1180
    • /
    • 1996
  • In this paper, we propose an algorithm that realizes cooperative behavior by construction of autonomous mobile robot system. Each robot is able to sense other robots and obstacles, and it has the rule of behavior to achieve the goal of the system. In this paper, to improve performance of the whole system, we use Genetic Programming based on Natural Selection. Genetic Programming's chromosome is a program of tree structure and it's major operators are crossover and mutation. We verify the effectiveness of the proposed scheme from the several examples.

  • PDF

A Study on Intelligence Navigation for Autonomous Mobile Robot Using Fuzzy Logic Control

  • Huh, Dei-Jeung;Lee, Woo-Young;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.138.5-138
    • /
    • 2001
  • The autonomous robot has the ability of obstacle avoidance and target tracking with some manufactured information. In this paper, it is shown that autonomous mobile robot can avoid fixed obstacles using the map made before and the fuzzy controller is adopted with the global path planing and the local path planing when the robot navigates. With that map sensor, information will be used when an autonomous robot navigates. This paper proves that robot can navigate through optimized route and keep the stable condition.

  • PDF

The development of mobile robot for hostile environment controlled by three motors (3개의 모터로 구동되는 극한작업용 이동로보트의 개발)

  • 권대갑;차영엽;염도성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.704-709
    • /
    • 1990
  • This study presents the structure and the gate control algorithm of KAMOBOT (KAIST Mobile Robot). The mobile robot has a six-legged, cylindrical configuration, each leg of which is equiped with a wheel at the bottom. The robot can go up and down stairs, go over obstacles, move along curvilinear paths and rotate around it's geometric center. Such maneuverability can be achieved by using only three electric motors.

  • PDF

A study on the trajectory controllable minimum-time controller using modified bang-bang control law (뱅뱅 제어법을 변형한 중간 경로 제동이 가능한 최단시간 제어기의 개발)

  • 이현오;양우석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.44-47
    • /
    • 1996
  • Bang-bang control law provides the optimal solution for a minimum-time control problem, but ignores the intermediate path except for the initial and final points. In this paper, a near minimum-time suboptimal fuzzy logic controller is introduced that can control the intermediate path. A dynamic model for a system is established using the average dynamics method of linearization. System model is continuously updated over the control time periods. This makes it suitable for high speed or variable payload applications. Bang-bang control theory is modified and used to derive the preliminary control law. A fuzzy logic algorithm is then applied to adjust and find the best solution. The solution will provide the suboptimal minimum-time control law which can avoid obstacles in the workspace.

  • PDF

A Study on a Intelligence Depth Control of Underwater Flight Vehicle (Underwater Flight Vehicle의 지능형 심도 제어에 관한 연구)

  • 김현식;황수복;신용구;최중락
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.30-41
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, It needs a robust performance which can get over the nonlinear characteristics due to hull shape. Second, It needs an accurate performance which has the small overshoot phenomenon and steady state error to avoid colliding with ground surface and obstacles. Third, It needs a continuous control input to reduce the acoustic noise. Finally, It needs an effective interpolation method which can reduce the dependency of control parameters on speed. To solve these problems, we propose a Intelligence depth control method using Fuzzy Sliding Mode Controller and Neural Network Interpolator. Simulation results show the proposed control scheme has robust and accurate performance by continuous control input and has no speed dependency problem.

  • PDF

Adaptive Sliding-Mode Formation Control and Collision Avoidance for Multi-agent Nonholonomic Mobile Robots with Model Uncertainty and Disturbance (모델 불확실성 및 외란을 갖는 이동 로봇들을 위한 적응 슬라이딩 모드 군집 제어 및 충돌 회피 기법)

  • Park, Bong-Seok;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1038-1043
    • /
    • 2010
  • In this paper, an adaptive sliding-mode formation control and collision avoidance are proposed for electrically driven nonholonomic mobile robots with model uncertainties and external disturbances. A sliding surface based on the leader-follower approach is developed to achieve the desired formation in the presence of model uncertainties and disturbances. Moreover, by using the collision avoidance function, the mobile robots can avoid the obstacles successfully. Finally, simulations illustrate the effectiveness of the proposed control system.

PI-based Feedforward Control for Driving Mode Transformation of Rescue Robot capable of Obstacle Overcoming (장애물 극복이 가능한 구조로봇의 주행모드 변형을 위한 PI-based Feedforward 제어)

  • Jeong, Hae-Kwan;Kang, Hyun-Suk;Kwak, Yoon-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.489-495
    • /
    • 2008
  • This paper offers a practical control scheme for driving mode transformation of a rescue robot already developed. The rescue robot, VSTR(Variable Single-Tracked Robot), has two driving modes, so can traverse untidy terrain and overcome obstacles such as stairs easily by use of timely driving mode transformation. Classical PI control scheme was used firstly for driving mode transformation, but stationary phenomenon, which might have a bad effect on the performance in real situation, came into existence. Therefore, we suggest a new controller, PI-based feedforward controller, which should be a good alternative for the problem, and compare it with other nonlinear control scheme.

Depth Control of Underwater Flight Vehicle Using Fuzzy Sliding Mode Controller and Neural Network Interpolator (퍼지 슬라이딩 모드 제어기 및 신경망 보간기를 이용한 Underwater Flight Vehicle의 심도 제어)

  • Kim, Hyun-Sik;Park, Jin-Hyun;Choi, Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.367-375
    • /
    • 2001
  • In Underwater Flight Vehicle depth control system, the followings must be required. First, it needs robust performance which can get over modeling error, parameter variation and disturbance. Second, it needs accurate performance which have small overshoot phenomenon and steady state error to avoid colliding with ground surface or obstacles. Third, it needs continuous control input to reduce the acoustic noise and propulsion energy consumption. Finally, it needs interpolation method which can sole the speed dependency problem of controller parameters. To solve these problems, we propose a depth control method using Fuzzy Sliding Mode Controller with feedforward control-plane bias term and Neural Network Interpolator. Simulation results show the proposed method has robust and accurate control performance by the continuous control input and has no speed dependency problem.

  • PDF