• Title/Summary/Keyword: Obstacle model

Search Result 339, Processing Time 0.03 seconds

A Study on the Practicality of Vision Control Scheme used for Robot's Point Placement task in Discontinuous Trajectory (불연속적인 궤적에서 로봇 점 배치작업에 사용된 비젼 제어기법의 실용성에 대한 연구)

  • Son, Jae-Kyeong;Jang, Wan-Shik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.386-394
    • /
    • 2011
  • This paper is concerned with the application of the vision control scheme for robot's point placement task in discontinuous trajectory caused by obstacle. The proposed vision control scheme consists of four models, which are the robot's kinematic model, vision system model, 6-parameters estimation model, and robot's joint angles estimation model. For this study, the discontinuous trajectory by obstacle is divided into two obstacle regions. Each obstacle region consists of 3 cases, according to the variation of number of cameras that can not acquire the vision data. Then, the effects of number of cameras on the proposed robot's vision control scheme are investigated in each obstacle region. Finally, the practicality of the proposed robot's vision control scheme is demonstrated experimentally by performing the robot's point placement task in discontinuous trajectory by obstacle.

Markov Model-based Static Obstacle Map Estimation for Perception of Automated Driving (자율주행 인지를 위한 마코브 모델 기반의 정지 장애물 추정 연구)

  • Yoon, Jeongsik;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.29-34
    • /
    • 2019
  • This paper presents a new method for construction of a static obstacle map. A static obstacle is important since it is utilized to path planning and decision. Several established approaches generate static obstacle map by grid method and counting algorithm. However, these approaches are occasionally ineffective since the density of LiDAR layer is low. Our approach solved this problem by applying probability theory. First, we converted all LiDAR point to Gaussian distribution to considers an uncertainty of LiDAR point. This Gaussian distribution represents likelihood of obstacle. Second, we modeled dynamic transition of a static obstacle map by adopting the Hidden Markov Model. Due to the dynamic characteristics of the vehicle in relation to the conditions of the next stage only, a more accurate map of the obstacles can be obtained using the Hidden Markov Model. Experimental data obtained from test driving demonstrates that our approach is suitable for mapping static obstacles. In addition, this result shows that our algorithm has an advantage in estimating not only static obstacles but also dynamic characteristics of moving target such as driving vehicles.

The Effects of Obstacle Aspect Ratio on Surrounding Flows (장애물 외관비가 주변 흐름에 미치는 영향)

  • Lee, Jae-Jin
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.381-391
    • /
    • 2007
  • The characteristics of flow around a single obstacle with fixed height and varied length and width are numerically investigated using a computational fluid dynamics (CFD) model. As the obstacle length increases, flow distortion near the upwind side of the obstacle increases and the size of the recirculation zone behind the obstacle also increases. As the obstacle width increases, the size of the recirculation zone decreases, despite almost invariable flow distortion near the upwind side of the obstacle. Flow passing through an obstacle is separated, one part going around the obstacle and the other crossing over the obstacle. The size of the recirculation zone is determined by the distance between the obstacle and the point (reattachment point) at which both the flows converge. When the obstacle width is relatively large, flows are reattached at the obstacle surface and their recoveries occur. Resultant shortening of the paths of flows crossing over and going around decreases the size of the recirculation zone. To support this, the extent of flow distortion defined based on the change in wind direction is analyzed. The result shows that flow distortion is largest near the ground surface and decreases with height. An increase in obstacle length increases the frontal area fraction of flow distortion around the obstacle. In the cases of increasing the width, the frontal area fraction near the upwind side of the obstacle does not change much, but near the downwind side, it becomes larger as the width increases. The frontal area fraction is in a better correlation with the size of the recirculation zone than the building aspect ratios, suggesting that the frontal area fraction is a good indicator for explaining the variation in the size of the recirculation zone with the building aspect ratios.

Obstacle Parameter Modeling for Model Predictive Control of the Unmanned Vehicle (무인자동차의 모델 예측제어를 위한 장애물 파라미터 모델링 기법)

  • Yeu, Jung-Yun;Kim, Woo-Hyun;Im, Jun-Hyuck;Lee, Dal-Ho;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1132-1138
    • /
    • 2012
  • The MPC (Model Predictive Control) is one of the techniques that can be used to control an unmanned vehicle. It predicts the future vehicle trajectory using the dynamic characteristic of the vehicle and generate the control value to track the reference path. If some obstacles are detected on the reference paths, the MPC can generate control value to avoid the obstacles imposing the inequality constraints on the MPC cost function. In this paper, we propose an obstacle modeling algorithm for MPC with inequality constraints for obstacle avoidance and a method to set selective constraint on the MPC for stable obstacle avoidance. Simulations with the field test data show successful obstacle avoidance and way point tracking performance.

Large eddy simulation of turbulent flow around a wall-mounted cubic obstacle in a channel using Lagrangian dynamic SGS model (Lagrangian Dynamic Sub-grid Scale 모델에 의한 평행평판내 입방체 장애물 주위 유동에 관한 대 와동 모사)

  • Ko, Sang-Cheol;Park, Nam-Seob
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.369-375
    • /
    • 2006
  • Large eddy simulation has been applied to simulate turbulent flow around a cubic obstacle mounted on a channel surface for a Reynolds number of 40000(based on the incoming bulk velocity and the obstacle height) using a Smagorinsky model and a Lagrangian dynamic model. In order to develop the LES to the practical engineering application, the effect of upwind scheme, turbulent sub-grid scale model were investigated. The computed velocities. turbulence quantifies, separation and reattachment length were evaluated by compared with the previous experimental results.

A study on the Responsibility of the Atmospheric Numerical Model on Turbulence induced by Orography (대기환경모형에 대한 지형성 난류의 의존성에 관한 연구)

  • Lee Soon-Hwan;Lee Hwa-Woon;Kim Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.653-660
    • /
    • 1999
  • The flow of non-rotation atmosphere with uniform stratification and wind past an isolated three dimensional topography obstacle is investigated with three-dimensional hydrostatic and non- hydrostatic numerical model. The characteristic of turbulence created the back of topography obstacle is usually defined by Froude number which is the function of upstream wind speed, the height of topography obstacle, and atmospheric stability. Turbulence tends to be formed more easily at the non-hydrostatic model than hydrostatic model. Especially, the difference between flow patterns of two models generated by isolated obstacle is more clear under low Froude number. The difference of flow patterns can be only seen at relatively low altitude, but at high altitude the patterns of two models are almost same. In this research, wind velocity in the parameters related with Froude number have great sensitivity at responsibility of numerical models. and slop of obstacle is also important factor at the flow pattern regardless of the species of numerical model

  • PDF

A Development of the Numerical Huge Obstacle Model for the Korean Rollingstock Safety Regulations (국내 철도차량안전법 요구 압괴 성능의 대형장애물 수치모델 개발)

  • Cho, Hyun-Jik;Koo, Jeong-Seo;Lee, Jang-Wook;Park, Kyoung-Chang;Park, Geun-Soo
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.491-495
    • /
    • 2009
  • This study aims to develope a numerical model of the huge obstacle defined in the Korean Rollingstock Safety Regulations. The shape and mechanical properties to be satisfied in the numerical model were based on the Regulations. Through a troublesome trial and error simulations, we developed the numerical model of the huge obstacle to satisfy physical properties of the specified guideline in the regulations. By applying the developed numerical obstacle, we carried out a crash simulation to evaluate vehicle crashworthiness.

  • PDF

Studies on the Optimal Location of Retail Store Considering the Obstacle and the Obstacle-Overcoming Point

  • Minagawa, Kentaro;Sumiyoshi, Kazushi
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.2
    • /
    • pp.129-133
    • /
    • 2004
  • Studies on the optimal location of retail store have been made in case of no obstacle(Minagawa etal. 1999). This paper deals with the location problem of retail store considering obstacles (e.g. rivers, railways, highways, etc.) and obstacle-overcoming points (e.g. bridges, railway crossings, zebra crossings, overpasses, etc.). We assume that (1) commercial goods dealt here are typically convenience goods, (2) the population is granted as potential demand, (3) the apparent demand is a function of the maximum migration length and the distance from the store to customers, (4) the scale of a store is same in every place and (5) there is no competitor. First, we construct the basic model of customers' behavior considering obstacles and obstacle-overcoming points. Analyzing the two dimensional model, the arbitrary force attracting customers is represented as a height of a cone where the retail store is located on the center. Second, we formulate the total demand of customers and determine the optimal location that maximizes the total demand. Finally, the properties of the optimal location are investigated by simulation.

Collision Analysis of the Next Generation High-speed EMU Using 3D/1D Hybrid FE Model (3D/1D 하이브리드 유한요소 모델을 이용한 동력 분산형 차세대 고속열차 전체차량의 충돌 해석)

  • Kim, Geo-Young;Koo, Jeong-Seo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.67-76
    • /
    • 2012
  • In this paper, collision analysis of the full rake for the Next Generation High-speed EMU is conducted using a 3D/1D hybrid model, which combines 3-dimensional (3D) front-end structure of finite element model and 1-dimensional (1D) multi-body dynamics model in order to analyze train collision with a standard 3D deformable obstacle. The crush forces, passengers' accelerations and energy absorptions of a full rake train can be easily obtained through a simulation of a 1D dynamics model composed of nonlinear springs, dampers and masses. Also the obtained simulation results are very similar to those of a 3D model if an overriding behavior does not occur during collision. The standard obstacle in TSI regulation has been changed from a rigid body to a deformable body, and therefore 3D collision simulations should be conducted because their simulation results depends on the front-end structure of a train. According to the obstacle collision analysis of this study, the obstacle collides with the driver's upper structure after overriding over the front-end module. The 3D/1D hybrid model is effective to evaluate a main energy-absorbing module that is frequently changed during design process and reduce the need time of the modeling and analysis when compared to a 3D full car body.

Urban Model for Mean Flow and Turbulence (평균풍속 및 난류 예측을 위한 도심지 모델)

  • Kim, Byung-Gu;Lee, Chang-Hoon;Kim, Seog-Cheol;Jang, Dong-Du;Joo, Seok-Jun;Shim, Woo-Sup
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2923-2928
    • /
    • 2007
  • The study of model for velocity and turbulence within the urban canopy was carried out. To evaluate existing urban model we conducted wind tunnel experiment and large-eddy simulation (LES). Mean velocity profile and turbulence are measured within simple three different obstacle arrays. To obtain supplemental data and to verify morphological model large-eddy simulation was performed. Several methods have been used to achieve embodying the flow field in urban area. Recently, morphological method obtaining flow parameters from the statistical or physical representation of obstacle elements is a arising method. It was found that all morphological model, evaluated in this study, over predict the friction velocity, most sensitive one among the flow parameters. Velocity and turbulence in the urban canopy layer were improved by the correction using 'true' friction velocity.

  • PDF