• Title/Summary/Keyword: Obstacle Map

Search Result 153, Processing Time 0.029 seconds

Systematic Coordinate Transformation between Different Projection Zones using GPS Survey Results (GPS성과를 매개로 한 구소삼각과 일반원점성과의 계통적 변환)

  • 김감래;최원준;임건혁
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.21-26
    • /
    • 2003
  • The fact on a variety of the plane coordinate systems in cadastral survey field caused a troublesome stage by different standards for the production of cadastral maps. The cadastral maps with different origins are not standardized in terms of unit and coordinate system, which introduces surveying problems at the edges where two or more zones meet. Moreover, difficulties in the creation of seamless digital cadastral map DBs between different coordinate systems has become the obstacle to establish various levels of spatial information systems for the efficient management of Korean Peninsula. Therefore, the aim of the study is to present a way to mutual coordinate transformation by clarifying the systematic differences between the areas of different origins.

  • PDF

3D image processing using laser slit beam and CCD camera (레이저 슬릿빔과 CCD 카메라를 이용한 3차원 영상인식)

  • 김동기;윤광의;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.40-43
    • /
    • 1997
  • This paper presents a 3D object recognition method for generation of 3D environmental map or obstacle recognition of mobile robots. An active light source projects a stripe pattern of light onto the object surface, while the camera observes the projected pattern from its offset point. The system consists of a laser unit and a camera on a pan/tilt device. The line segment in 2D camera image implies an object surface plane. The scaling, filtering, edge extraction, object extraction and line thinning are used for the enhancement of the light stripe image. We can get faithful depth informations of the object surface from the line segment interpretation. The performance of the proposed method has demonstrated in detail through the experiments for varies type objects. Experimental results show that the method has a good position accuracy, effectively eliminates optical noises in the image, greatly reduces memory requirement, and also greatly cut down the image processing time for the 3D object recognition compared to the conventional object recognition.

  • PDF

A Study of Localization Algorithm of HRI System based on 3D Depth Sensor through Capstone Design (캡스톤 디자인을 통한 3D Depth 센서 기반 HRI 시스템의 위치추정 알고리즘 연구)

  • Lee, Dong Myung
    • Journal of Engineering Education Research
    • /
    • v.19 no.6
    • /
    • pp.49-56
    • /
    • 2016
  • The Human Robot Interface (HRI) based on 3D depth sensor on the docent robot is developed and the localization algorithm based on extended Kalman Filter (EKFLA) are proposed through the capstone design by graduate students in this paper. In addition to this, the performance of the proposed EKFLA is also analyzed. The developed HRI system consists of the route generation and localization algorithm, the user behavior pattern awareness algorithm, the map data generation and building algorithm, the obstacle detection and avoidance algorithm on the robot control modules that control the entire behaviors of the robot. It is confirmed that the improvement ratio of the localization error in EKFLA on the scenarios 1-3 is increased compared with the localization algorithm based on Kalman Filter (KFLA) as 21.96%, 25.81% and 15.03%, respectively.

Mobile Robot Navigation using a Dynamic Multi-sensor Fusion

  • Kim, San-Ju;Jin, Tae-Seok;Lee, Oh-Keol;Lee, Jang-Myung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.240-243
    • /
    • 2003
  • In this study, as the preliminary step far developing a multi-purpose Autonomous robust carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as sonar, IR sensor for map-building mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within both indoor and outdoor environments. Smart sensory systems are crucial for successful autonomous systems. We will give an explanation for the robot system architecture designed and implemented in this study and a short review of existing techniques, since there exist several recent thorough books and review paper on this paper. It is first dealt with the general principle of the navigation and guidance architecture, then the detailed functions recognizing environments updated, obstacle detection and motion assessment, with the first results from the simulations run.

  • PDF

Network Based Robot Simulator Implementing Uncertainties in Robot Motion and Sensing (로봇의 이동 및 센싱 불확실성이 고려된 네트워크 기반 로봇 시뮬레이션 프로그램)

  • Seo, Dong-Jin;Ko, Nak-Yong;Jung, Se-Woong;Lee, Jong-Bae
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • This paper suggests a multiple robot simulator which considers the uncertainties in robot motion and sensing. A mobile robot moves with errors due to some kinds of uncertainties from actuators, wheels, electrical components, environments. In addition, sensors attached to a mobile robot can't make accurate output information because of uncertainties of the sensor itself and environment. Uncertainties in robot motion and sensing leads researchers find difficulty in building mobile robot navigation algorithms. Generally, a robot algorithm without considering unexpected uncertainties fails to control its action in a real working environment and it leads to some troubles and damages. Thus, the authors propose a simulator model which includes robot motion and sensing uncertainties to help making robust algorithms. Sensor uncertainties are applied in range sensors which are widely used in mobile robot localization, obstacle detection, and map building. The paper shows performances of the proposed simulator by comparing it with a simulator without any uncertainty.

Optimal path planing of Indoor Automatic Robot using Dynamic Programming (동적계획법을 이용한 실내 자율이동 로봇의 최적 경로 계획)

  • Ko, Su-Hong;Gim, Seong-Chan;Choi, Jong-Young;Kim, Jong-Man;Kim, Hyong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.551-553
    • /
    • 2006
  • An autonomous navigation technology for the mobile robot is investigated in this paper. The proposed robot path planning algorithm employs the dynamic programming to find the optimal path. The algorithm finds the global optimal path through the local computation on the environmental map. Since the robot computes the new path at every point, it can avoid the obstacle successfully during the navigation. The experimental results of the robot navigation are included in this paper.

  • PDF

Obstacle Avoidance Navigation Using Distance Profile Histogram (거리 형태 히스토그램을 이용한 이동로보트의 장애물 회피 주행)

  • 김현태;노흥식;조영완;박민용
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.1-12
    • /
    • 1996
  • A new local path planning algorithm using DPH (distance profile histogram) is suggested in this paper. The proposed method makes a grid type world map using distance values from multiple ultrasonic sensors and genrates local points through which the mobile robot can avoid obstcles safely. The DPH (distance profile historgram) represents geometrical arrangement of obstacles around the robot in the local polar coordinate system which is assumed to be atached to the robot. To control robot's navigation, a three-layered control structure is adopted. The proposed local path planning algorithm is placed on the top level. And a point-to-point translation controller takes the middle level. The bottom level consists of a velcoity servo and sonar driver modules which take charge of driving physical hardwares. The validity of the propsoed method is demonstated through several experiments.

  • PDF

A Study on the Force Reflection Joystick Method or controlling Rehabilitation Assisting System (재활 보조 시스템 제어를 위한 힘 반향 조이스틱 기법에 관한 연구)

  • Hong, J.P.;Lee, E.H.;Kim, B.S.;Kim, S.H.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.507-510
    • /
    • 1997
  • In this paper, we proposed force reflection method using joystick or controlling rehabilitation assisting mobile robot. We defined reflected orce equation as two terms. One is distance between mobile robot and obstacle, the other is speed of rehabilitation assisting robot. And we found the each gain value which guarantees stable navigation of robot. And we experimented simulation with simulation program supporting virtual 2-D map. Through the experiments, we confirmed force reflection algorithm is efficient when controlling rehabilitation assisting robot.

  • PDF

Path Planning for an Intelligent Robot Using Flow Networks (플로우 네트워크를 이용한 지능형 로봇의 경로계획)

  • Kim, Gook-Hwan;Kim, Hyung;Kim, Byoung-Soo;Lee, Soon-Geul
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.255-262
    • /
    • 2011
  • Many intelligent robots have to be given environmental information to perform tasks. In this paper an intelligent robot, that is, a cleaning robot used a sensor fusing method of two sensors: LRF and StarGazer, and then was able to obtain the information. Throughout wall following using laser displacement sensor, LRF, the working area is built during the robot turn one cycle around the area. After the process of wall following, a path planning which is able to execute the work effectively is established using flow network algorithm. This paper describes an algorithm for minimal turning complete coverage path planning for intelligent robots. This algorithm divides the whole working area by cellular decomposition, and then provides the path planning among the cells employing flow networks. It also provides specific path planning inside each cell guaranteeing the minimal turning of the robots. The proposed algorithm is applied to two different working areas, and verified that it is an optimal path planning method.

Fast Generation Methods for Computer-Generated Hologram Using a Modified Recursive Addition Algorithm

  • Choi, Hyun-Jun
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.282-287
    • /
    • 2013
  • A real-time digital holographic display is the core technology for the next-generation 3DTV. Holographic display requires a considerably large amount of calculation. If generating a large number of digital holograms is intended, the amount of calculation and the time required increase exponentially. This is a significant obstacle in a real-time hologram service. This paper proposes an algorithm that increases the speed of generating a Fresnel hologram by using a recursive addition operation covering the entire coordinate array of a digital hologram. The 3D object designed to calculate the digital hologram uses a depth-map image produced by computer graphics. The proposed algorithm is a technique that performs the computer-generated holography (CGH) operation with only recursive addition of all of the hologram's coordinates by analyzing the regularity between the 3D object and the digital hologram coordinates. The experimental results show that the proposed algorithm increases the operation speed by 70% over the technique using the conventional CGH equation and by more than 30% over the previously proposed recursive technique.