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Abstract— In this study, as the preliminary step for developing a
multi-purpose Autonomous robust carrier mobile robot to
transport trolleys or heavy goods and serve as robotic nursing
assistant in hospital wards. The aim of this paper is to present
the use of multi-sensor data fusion such as sonar, IR sensor for
map-building mobile robot to navigate, and presents an
experimental mobile robot designed to operate autonomously
within both indoor and outdoor environments. Smart sensory
systems are crucial for successful autonomous systems. We will
give an explanation for the robot system architecture designed
and implemented in this study and a short review of existing
techniques, since there exist several recent thorough books and
review paper on this paper. It is first dealt with the general
principle of the navigation and guidance architecture, then the
detailed functions recognizing environments updated, obstacle
detection and motion assessment, with the first results from the
simulations run.

I. INTRODUCTION
Sensing of the environment and subsequent control is
important feature of the navigation of an autonomous mobile
robot. When a mobile robot navigates in an unknown or
partially known environment, several types of sensors are
commonly used for this purpose such as ultrasonic sensors,
infrared sensors, laser range finders and vision systems for
obstacle avoidance or path planning. Recently, it is
increasing the use of vision system because it has
inexpensive and is able to be fast real-time environmental
recognition (Allen et al., 1991; Camillo et al., 1998). In this
paper we present a statistical method for dealing with the
general problem of concurrent localization and map building
and show a global map using the local maps of each point.
We furthermore address the problem of using occupancy

grid maps for path planning in highly dynamic environments.

The approaches have been tested extensively and several
experimental results are given in the paper.

II. A GENERAL PATTERN OF SENSOR FUSION

Fig. 1 is mean to represent a general pattern of multi-sensor
integration and fusion in a system. In this Fig., n sensors are
integrated to provide information to the system. The output
X, and X, from the first two sensors are fused at the
lower left-hand node into a new representation X, ,. The

output X, from the third sensor could then be fused with
X, , atthe next node, resulting in the representation X, , 3,
which might then be fused at nodes higher in the structure.
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Fig. 1. General pattern of multi-sensor integration and fusion
in system.

1I1. RELATED THEORIES
We will start by introducing the basic principles of data
fusion in robots. We will then describe some existing mobile
platform from a sensory processing perspective. The concept
of using directed sonar sensing for navigation will be
discussed in more detail, and we will concentrate on grid-
based methods.

3.1. Occupancy Grids

Occupancy Grids is certainty a state of the art method in the
field of grid based methods. The idea is to divide the
environment into grid cell C,j. Typically a 2-dimensional
grid is enough to give interesting information about the
environment. Each cell can be in two states
5(C,;) =0CCupied or s(C,) =EMPty, and to each cell
there is a probability P[s(d }=0OCC] attached, which
reflects the belief of the ce]l C being occupied by an
object. Since

P[s(C,)=EMP] =1-P[s(C,)=0CC] (1)
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The grid is initialized with P[s(C;)=0CC]=1/2. To
update the cells when the robot traverses the environment, a
stochastic sensor model p(r|z) is used. This model is
obtained from experiments with the sensor in question and
relates reading vector, I, to the true space range vector, Z.
Given a new range reading, I, from a sensor, the idea now
is to use the sensor model p(r|z) to update the
probabilities P[s(C,)=0CC] in the Occupancy Grid.
This can be done by using Bayes theorem, see Equation (4),

PIr|s(C,) = OCCIPS(C,) =0CCT
2 e,y Plrls(CIPLs(Cy)]

P{s(C,)=0CC|r]=

We mention here that the right side of Equation (2) has to be
developed further to be computable. Exactly how this is
done can be found in (Abidi ef al., 1992; Elfes, 1989). The
Occupancy grid method now provides a useful setting for
fusing data from different sensors. There are, basically, two
main approaches:

Considering handling position uncertainty of the robot one
can have a global grid map of the environment stored on the
robot platform. The fused robot map can then be matched
against the global map to reduce uncertainty in position. One
major drawback with using Occupancy Grids as described
above is that when updating the grid, i.e., evaluating
Equation (2) for each cell Cij, the computational cost is
high even for rather small grids. This implies that algorithms
that use Occupancy grids for navigation are rather slow. One
way of getting around this problem is to use Vector Field
Histogram methods, which is described in the next section.

3.2. Vector Field Histogram (VFH)

The Vector Field Histogram is a way of handling fast map
building and obstacle avoidance at the same time. The
method was originally introduced by Borenstein and Koren
[9,10,11]. A window moves with the robot, overlying a
square region of active window in the histogram grid of Fig.
2. The contents of each active cell in the histogram grid are
mapped into the corresponding sector of the polar histogram
(see Fig. 2), resulting in each sector k(.S, ) holding a value
h, . Thus, A, is higher if there are many cells with high
certainty value C; s in one sector. Intuitively, this value can
be interpreted as the polar obstacle density in the direction of
sector k( S, ).

However, to obtain a fast map update, the formula (2) is not
used since it projects a probability profile onto all those cells
affected by a range reading. Instead each cells have an
associated certainty value C; of integer type which reflects
the belief of the cell being occupied. The higher (lower)
value of Cy» the more confidence we have that the cell CU
being occupied (empty). The question of how much the cells
should be incremented or decremented depends on which
type of sensors is used. So again it is important to have good
sensor models in order to obtain good results. To prevent the
integers C;, to grow or decrease too much, they are

i
saturated at some maximum and minimum integer. For cach

cell Cij in a given sector, say §,, one calculates an
obstacle vector m,;. The magnitude of m, is dependent
of the certainty value Cy and also by the distance between
the center of the grid (robot position) and the cell C[j . After
this procedure one sum all the obstacle vectors m;s in
sector S, to form an obstacle density entity 4,

hk: Zmij’ k:1,...n. (3

CyeS,

At this point the entities h,h,,...,h, are uses to form a
histogram, which can be used for building map. Areas in the
histogram where the vector magnitudes are big indicate
regions with high obstacle density, while areas with low
vector magnitudes regions with low obstacle density. By
adapting a threshold to the histogram it is possible to localize
regions of sectors with low obstacle distance which can be
used for obstacle avoidance.
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Fig. 2. The heart of the VFH method: Mapping active
cells onto the polar histogram.

1V. DATA FUSION

Data fusion is about deriving information about certain
variables from observations of other variables. The
application area is huge, sce the special issue on data fusion
in (Varshney, 1997) for a recent overview. An edited
collection of survey papers on data fusion in robotics and
machine intelligent is given in (Abidi et al., 1992). Sensor
fusion in general is discussed in (Rothman et al., 1991;
Thomopoulos, 1990).

4.1. Statistical Foundations
From a statistical perspective, we have the following
problem. Given two vector random variables X and Y,
what does the observation ¥ =y tell us about X ? The
complete answer is given by the so-called conditional
probability density function,

Py (%))
Py (y)
Here p,,(x,) is the joint probability density for X
and Y, and p,(y) is the probability density for Y. By
using the dual assumption, namely that X =x is given,

Py (x|y)= 4

we obtained the very useful Bayes rule

Py (x’ )’) =Py (.\' l })P) ()) = py!_\' (}’ | x)P‘(-\f) (5)
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Py (x,y) = Pyx 62 x)Px (x) , ©)
pr(¥)

which is the key formula in Bayesian and maximum
likelihood estimation theory.

Different estimates of X can now be constructed from its
distribution. The (conditional) minimal variance of X
equals the conditional mean of X given Y=y,

E=EX|Y=yl=[ mpy&ind O

Another useful estimate is the maximum a posteriori
estimate, which maximizes the function py, (x|y). The
rest is design and analysis issues, i.e. formulating the
underlying model, specifying probability density functions
and calculating equality/variance properties. The most used
probability density function is the Gaussian one (the Normal
distribution). The main reason is that the conditional density
function also will be Gaussian, and analytic expressions of
the minimal variance estimate can thus be obtained.

Let X and Y be jointly Gaussian,ie. Z=[X"Y'] is
Gaussian with mean and covariance

x 2o 2y
m,= [f] ’zzz - i:zyx Zyy:| ®

Then X conditional on Y =y has a Gaussian
distribution with mean and covariance

My =T+ L, T (=705, =Za Ty Ty 2, O

Hence the conditional mean of X given ¥ =y, equals

F=E[X|Y=y]=%+Z X (y-¥) (10

Almost all practical estimators are special cases of the above
result. The expression is called the fundamental equations of
linear estimation in (Bar-Shalom, 1993). This reference also
provides a very good introduction to estimation theory, in
general, and tracking, in particular.

V. ROBOT TYPE IN EXPERIMENT SETUP
The mobile robot used in the experiments is an IRL-
2001 developed in the IRL, PNU which is designed for an int
elligent service robot.

Fig. 3: IRL-2001 robot.
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This robot is shown in Fig. 3 along with some of its sensory
components. Its main controller is made on system clock 1.2
GHz, Pentium IV Processor. The sensors, 16-ultrasonic and a
robust odometry system are installed on the mobile robot.
Ultrasonic sensors and infrared sensors in eight sides(25°)
sense obstacles of close range, and the main controller
processes this information.

5.1. Building a local map

Building a robust and reliable avoid behavior has been found
to require some kind of memory. Inspired by the work of
Borenstein and Koren [4] we have implemented a grid based
local map for the robot. So far this map has been updated
using only the sonar data. At this early stage we have been
using a ray-trace model for the sonar, which is justified by
the motto, try simple first and supported by [10]. The results
of these tests show that the avoid behavior is improved.
Below (Fig. 4) is a sketch of the experimental environment.
To show what the local maps look like, four samples of such
maps are shown in Fig.s 5-7. The size of the cells in these
maps were 20X20 mm and the number of cells were
200X200, giving a total size of 4X4m. Note that the
coordinate system of the local maps are robot centered. The
approximate location of the robot when the maps were saved
is given in the sketch (Fig. 4) by the letters A-D.
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Fig. 4. A sketch of the environment around the robot lab.
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Fig. 5. Sonar based local map of the corridor outside room
with three closed wall and one open. A in the sketch.
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Fig. 6. Sonar based local map of the corridor beside room. B
in the sketch.
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Fig. 7. Sonar based local map of the door-passage into room.
C in the sketch.

If the local map is extended to a size that can hold much
more information the figure below (Fig. 8) show a possible
result. It can be clearly seen that most of the features of the
environment (corners, wall, etc) are accurately mapped. The
intention of the local map is not to be this large, but rather to
have a size more like the once shown above. The global map
is updated based on the local map, i.e., the sensor data is not
directly used in the global map.
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Fig. 8. Sonar based map of the experimental environment.

VI. CONCLUSION
In this paper, we have presented two more or less orthogonal
approaches for using sonar sensor and map-building by
multi-sensor mobile robot to navigate within an indoor

setting. Important regions of the robot workspace (locales)
are represented using grid-based map collected during the
exploration phase. From a scientific/academic perspective it
is important to study very general issues and approaches,
were the ultimate aim is full autonomy. However, the
engineering perspective is the opposite, i.e. one wants to
solve a specific problem, e.g. a sonar sensor based feedback
control algorithm for going through narrow doorways.
However, the main issue for such research is scalability, i.e.
is the solution of more general interest and can it be
extended to more complex situations.

For future works, it is straightforward to control robot locate
a certain target with multi-sensor upon navigation. Also it
will be interesting to have the robot to learn and map an
unknown or pseudo-unknown environment.
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