• 제목/요약/키워드: Obstacle Map

검색결과 149건 처리시간 0.029초

시각 장애인 보행안내를 위한 장애물 분포의 3차원 검출 및 맵핑 (3D Detection of Obstacle Distribution and Mapping for Walking Guide of the Blind)

  • 윤명종;정구영;유기호
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.155-162
    • /
    • 2009
  • In walking guide robot, a guide vehicle detects an obstacle distribution in the walking space using range sensors, and generates a 3D grid map to map the obstacle information and the tactile display. And the obstacle information is transferred to a blind pedestrian using tactile feedback. Based on the obstacle information a user plans a walking route and controls the guide vehicle. The algorithm for 3D detection of an obstacle distribution and the method of mapping the generated obstacle map and the tactile display device are proposed in this paper. The experiment for the 3D detection of an obstacle distribution using ultrasonic sensors is performed and estimated. The experimental system consisted of ultrasonic sensors and control system. In the experiment, the detection of fixed obstacles on the ground, the moving obstacle, and the detection of down-step are performed. The performance for the 3D detection of an obstacle distribution and space mapping is verified through the experiment.

자율주행 인지를 위한 마코브 모델 기반의 정지 장애물 추정 연구 (Markov Model-based Static Obstacle Map Estimation for Perception of Automated Driving)

  • 윤정식;이경수
    • 자동차안전학회지
    • /
    • 제11권2호
    • /
    • pp.29-34
    • /
    • 2019
  • This paper presents a new method for construction of a static obstacle map. A static obstacle is important since it is utilized to path planning and decision. Several established approaches generate static obstacle map by grid method and counting algorithm. However, these approaches are occasionally ineffective since the density of LiDAR layer is low. Our approach solved this problem by applying probability theory. First, we converted all LiDAR point to Gaussian distribution to considers an uncertainty of LiDAR point. This Gaussian distribution represents likelihood of obstacle. Second, we modeled dynamic transition of a static obstacle map by adopting the Hidden Markov Model. Due to the dynamic characteristics of the vehicle in relation to the conditions of the next stage only, a more accurate map of the obstacles can be obtained using the Hidden Markov Model. Experimental data obtained from test driving demonstrates that our approach is suitable for mapping static obstacles. In addition, this result shows that our algorithm has an advantage in estimating not only static obstacles but also dynamic characteristics of moving target such as driving vehicles.

DEM과 장애물 지도를 이용한 거리변환 경로계획 (Distance Transform Path Planning using DEM and Obstacle Map)

  • 최덕선;지태영;김준;박용운;류철형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.92-94
    • /
    • 2005
  • Unmanned ground vehicles(UGVs) are expected to play a key role in the future army. These UGVs would be used for weapons platforms. logistics carriers, reconnaissance, surveillance, and target acquisition in the rough terrain. Most of path planning methodologies for UGVs offer an optimal or sub-optimal shortest-path in a 20 space. However, those methodologies do not consider increment and reduction effects of relative distance when a UGV climbs up or goes down in the slope of rough terrain. In this paper, we propose a novel path planning methodology using the modified distance transform algorithm. Our proposed path planning methodology employs two kinds of map. One is binary obstacle map. The other is the DEM. With these two maps, the modified distance transform algorithm in which distance between cells is increased or decreased by weighting function of slope is suggested. The proposed methodology is verified by various simulations on the randomly generated DEM and obstacle map.

  • PDF

격자형 환경 모델을 이용한 장애물의 의도 추론 (Obstacle's Intention Inference using the Grid-type Map)

  • 김성훈;이희영;변증남
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.796-799
    • /
    • 1999
  • In this paper, we propose an inference method for understanding intention of obstacle for collision avoidance using the grid-type map. In order to represent the environment using ultrasonic sensors, the grid-type map is first constructed. Then we detect the obstacle and infer the intention for collision avoidance using the CLA(Centroid of Largest Area) point of the grid-type map. To verify the proposed method, some experiments are performed.

  • PDF

도심 자율주행을 위한 라이다 정지 장애물 지도 기반 위치 보정 알고리즘 (LiDAR Static Obstacle Map based Position Correction Algorithm for Urban Autonomous Driving)

  • 노한석;이현성;이경수
    • 자동차안전학회지
    • /
    • 제14권2호
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents LiDAR static obstacle map based vehicle position correction algorithm for urban autonomous driving. Real Time Kinematic (RTK) GPS is commonly used in highway automated vehicle systems. For urban automated vehicle systems, RTK GPS have some trouble in shaded area. Therefore, this paper represents a method to estimate the position of the host vehicle using AVM camera, front camera, LiDAR and low-cost GPS based on Extended Kalman Filter (EKF). Static obstacle map (STOM) is constructed only with static object based on Bayesian rule. To run the algorithm, HD map and Static obstacle reference map (STORM) must be prepared in advance. STORM is constructed by accumulating and voxelizing the static obstacle map (STOM). The algorithm consists of three main process. The first process is to acquire sensor data from low-cost GPS, AVM camera, front camera, and LiDAR. Second, low-cost GPS data is used to define initial point. Third, AVM camera, front camera, LiDAR point cloud matching to HD map and STORM is conducted using Normal Distribution Transformation (NDT) method. Third, position of the host vehicle position is corrected based on the Extended Kalman Filter (EKF).The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment and showed better performance than only lane-detection algorithm. It is expected to be more robust and accurate than raw lidar point cloud matching algorithm in autonomous driving.

촉각제시에 의한 시각장애인 보행안내에 관한 연구 (A Study of Walking Guide for the Blind by Tactile Display)

  • 윤명종;강정호;유기호
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.783-789
    • /
    • 2007
  • In this paper, firstly, we propose a generating method of the 3-D obstacle map using ultrasonic sensors. Secondly, we try to find the necessary stimulation conditions of compact tactile display device for effective transfer of obstacle information. The final goal of this research is the development of a walking guide system for the blind to walk safely. The walking guide system consists of a guide vehicle for the obstacle detection and a tactile display device for the transfer of the obstacle information. The guide vehicle, located in front of the walking blind, detects the obstacle using ultrasonic sensors. The processed information makes an obstacle map and transmits safe path and emergency situation to the blind by the tactile display. The tactile display device, located in the handle which is connected with the guide vehicle by cane, offers the processed obstacle information such as position, size, moving, shape of obstacle and safe path, etc. The concept of a walking guide system with tactile display is introduced, and experiments of 3-D obstacle detection and tactile perception are carried out and analyzed.

위치 추정, 충돌 회피, 동작 계획이 융합된 이동 로봇의 자율주행 기술 구현 (Implementing Autonomous Navigation of a Mobile Robot Integrating Localization, Obstacle Avoidance and Path Planning)

  • 노성우;고낙용;김태균
    • 한국전자통신학회논문지
    • /
    • 제6권1호
    • /
    • pp.148-156
    • /
    • 2011
  • 본 논문은 실내 이동로봇의 자율주행 방법을 적용한 결과를 기술한다. 구체적으로 지도생성, 위치추정, 장애물 회피, 경로계획에 대해서 설명한다. 기하학적 지도는 위치추정과 경로계획에 이용된다. 위치 추정을 위해서 지도 정보를 이용하여 센서 데이터를 계산하고 이를 실제 센서 데이터와 비교한다. 위치 추정에는 몬테 카를로 위치 추정 방법을 사용한다. 인공 전위계를 사용하여 장애물로부터의 척력과 목표 위치로의 인력을 구하여 장물을 피한다. 경로계획을 위해 다익스트라 알고리즘을 이용하여 로봇의 출발 위치에서 목표 위치까지의 최단거리 경로를 구한다. 이러한 방법들이 통합하여 자율 주행 방법을 실제로 구현하여 실험하였다. 실제 실험을 통하여 제안한 방법이 로봇을 안전하게 자율주행하게 함을 확인하였다.

전동휠체어 주행안전을 위한 3차원 깊이카메라 기반 장애물검출 (3D Depth Camera-based Obstacle Detection in the Active Safety System of an Electric Wheelchair)

  • 서준호;김창원
    • 제어로봇시스템학회논문지
    • /
    • 제22권7호
    • /
    • pp.552-556
    • /
    • 2016
  • Obstacle detection is a key feature in the safe driving control of electric wheelchairs. The suggested obstacle detection algorithm was designed to provide obstacle avoidance direction and detect the existence of cliffs. By means of this information, the wheelchair can determine where to steer and whether to stop or go. A 3D depth camera (Microsoft KINECT) is used to scan the 3D point data of the scene, extract information on obstacles, and produce a steering direction for obstacle avoidance. To be specific, ground detection is applied to extract the obstacle candidates from the scanned data and the candidates are projected onto a 2D map. The 2D map provides discretized information of the extracted obstacles to decide on the avoidance direction (left or right) of the wheelchair. As an additional function, cliff detection is developed. By defining the "cliffband," the ratio of the predefined band area and the detected area within the band area, the cliff detection algorithm can decide if a cliff is in front of the wheelchair. Vehicle tests were carried out by applying the algorithm to the electric wheelchair. Additionally, detailed functions of obstacle detection, such as providing avoidance direction and detecting the existence of cliffs, were demonstrated.

카메라 렌즈의 초점을 이용한 이동로봇의 장애물 회피 (Obstacle Avoidance for Mobile Robot using Focus of a Camera Lens)

  • 윤기돈;오성남;한철완;김갑일;손영익
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.255-257
    • /
    • 2005
  • This paper describes a method for obstacle avoidance and map building for mobile robots using one CCD camera. The captured image from one camera has the feature that some parts where focused look fine but the other parts look blear (this is the out-focusing effect). Using this feature a mobile robot can find obstacles in his way from the captured image. After Processing the image, a robot can not only determine whether an obstacle is in front of him or not, but also calculate the distance from obstacles based on image data and the focal distance of its camera lens. Finally, robots can avoid the obstacle and build the map using this calculated data.

  • PDF