• Title/Summary/Keyword: Observation system

Search Result 3,203, Processing Time 0.033 seconds

Data Assimilation Effect of Mobile Rawinsonde Observation using Unified Model Observing System Experiment during the Summer Intensive Observation Period in 2013 (2013년 여름철 집중관측동안 통합모델 관측시스템실험을 이용한 이동형 레윈존데 관측의 자료동화 효과)

  • Lim, Yun-Kyu;Song, Sang-Keun;Han, Sang-Ok
    • Journal of the Korean earth science society
    • /
    • v.35 no.4
    • /
    • pp.215-224
    • /
    • 2014
  • Data assimilation effect of mobile rawinsonde observation was evaluated using Unified Model (UM) with a Three-Dimensional Variational (3DVAR) data assimilation system during the intensive observation program of 2013 summer season (rainy season: 20 June-7 July 2013, heavy rain period: 8 July-30 July 2013). The analysis was performed by two sets of simulation experiments: (1) ConTroL experiment (CTL) with observation data provided by Korea Meteorological Administration (KMA) and (2) Observing System Experiment (OSE) including both KMA and mobile rawinsonde observation data. In the model verification during the rainy season, there were no distinctive differences for 500 hPa geopotential height, 850 hPa air temperature, and 300 hPa wind speed between CTL and OSE simulation due to data limitation (0000 and 1200 UTC only) at stationary rawinsonde stations. In contrast, precipitation verification using the hourly accumulated precipitation data of Automatic Synoptic Observation System (ASOS) showed that Equivalent Threat Score (ETS) of the OSE was improved by about 2% compared with that of the CTL. For cases having a positive effect of the OSE simulation, ETS of the OSE showed a significantly higher improvement (up to 41%) than that of the CTL. This estimation thus suggests that the use of mobile rawinsonde observation data using UM 3DVAR could be reasonable enough to assess the improvement of prediction accuracy.

Assessment of Observation Environments of Automated Synoptic Observing Systems Using GIS and WMO Meteorological Observation Guidelines (GIS와 WMO 기상 관측 환경 기준을 이용한 종관기상관측소 관측환경평가)

  • Kang, Jung-Eun;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.693-706
    • /
    • 2020
  • For ten meteorological observatories running an automated synoptic observing system (ASOS), we classified the observation environments into five classes based on the World Meteorological Organization (WMO) classification guidelines. Obstacles (such as topography and buildings) and land-cover types were the main factors in evaluating the observation environments for the sunshine duration, air-temperature, and surface wind. We used the digital maps of topography, buildings, and land-cover types. The observation environment of the sunshine duration was most affected by the surrounding buildings when the solar altitude angle was low around the sunrise and sunset. The air-temperature observation environment was determined based on not only the solar altitude angle but the distance between the heat/water source and ASOS. There was no water source around the ASOSs considered in this study. Heat sources located near some ASOSs were not large enough to affect the observation environment. We evaluated the surface wind observation environment based on the roughness length around the ASOS and the distance between surrounding buildings and the ASOS. Most ASOSs lay at a higher altitude than the surroundings and the roughness lengths around the ASOSs were small enough to satisfy the condition for the best level.

Study on Application of Real Time AIS Information

  • Hori, Akihiko;Arai, Yasuo;Okuda, Shigeyuki
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.63-70
    • /
    • 2006
  • Now AIS (Automatic Identification System) has been under full operation for ocean-going vessels, and it is expected not only to identify target ships but also to take collision avoidance using AIS information with Radar and ARFA information in restricted waters. AIS information is very useful not only for target identifications but also for taking collision avoidance, but OOW (Officer OF Watch-keeping) should take care of systematic observation of AIS because of miss-operation or malfunction of AIS. In this paper, we propose the application of Onboard Ship Handling Simulator with visual system displayed 3D scene added AIS performance such as blind areas of Island, microwave propagation, ok. and maneuvering simulation using TK models, applied real time AIS information and research the effectiveness of this system for ship handling in restricted waters, and discus the principal issues through the on board experiments. Conclusion will be expected that; 1) systematic observation of ASS information using visual scene simulator with AIS information will be effectively done, 2) observation compared with Radar and ARPA information will be also useful to make a systematic observation, 3) using the recording and replay function of simulation will be useful not only for systematic observation but also to measure and to encourage officers' skill.

  • PDF

Sensitivity Analysis of Simulated Precipitation System to the KEOP-2004 Intensive Observation Data (KEOP-2004 집중관측 자료에 대한 강수예측의 민감도 분석)

  • Park, Young-Youn;Park, Chang-Geun;Choi, Young-Jean;Cho, Chun-Ho
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.435-453
    • /
    • 2007
  • KEOP (Korea Enhanced Observing Period)-2004 intensive summer observation was carried out from 20 June to 5 July 2004 over the Southwestern part of the Korean peninsula. In this study, the effects of KEOP-2004 intensive observation data on the simulation of precipitation system are investigated using KLAPS (Korea Local Analysis and Prediction System) and PSU/NCAR MM5. Three precipitation cases during the intensive observation are selected for detailed analysis. In addition to the control experiments using the traditional data for its initial and boundary conditions, two sensitivity experiments using KEOP data with and without Jindo radar are performed. Although it is hard to find a clear and consistent improvement in the verification score (threat score), it is found that the KEOP data play a role in improving the position and intensity of the simulated precipitation system. The experiments started at 00 and 12 UTC show more positive effect than those of 06 and 18 UTC. The effect of Jindo radar is dependent on the case. It plays a significant role in the heavy rain cases related to a mesoscale low over Changma front and the landing of a Typhoon. KEOP data produce more strong difference in the 06/18 UTC experiments than in 00/12 UTC, but give more positive effects in 00/12 UTC experiments. One of the possible explanations for this is that : KEOP data could properly correct the atmosphere around them when there are certain amounts of data, while gives excessive effect to the atmospheric field when there are few data. CRA analysis supports this reasoning. According to the CRA (Contiguous Rain Area) analysis, KEOP data in 00/12 UTC experiments improve only the surrounding area, resulting in essentially same precipitation system so the effects remain only in each convective cell rather than the system itself. On the other hand, KEOP data modify the precipitation system itself in 06/18 UTC experiments. Therefore the effects become amplified with time integration.

The study on the selection of operating conditions of the precipitation heating system for observation of snowfall in winter (겨울철 강설 관측을 위한 강수량계 가열 시스템 운영 조건 선정에 관한 연구)

  • Kim, Byeongtaek;Hwang, Sungeun;Lee, Youngtae;Kim, Minhoo;Hwang, Hyunjun;In, Sora;Yun, Jinah;Kim, Kihoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.7
    • /
    • pp.461-470
    • /
    • 2023
  • The purpose of this research is to derive the optimal temperature, location, and heating control system for a tipping bucket rain gauge heating system used for observing snowfall during winter. We conducted indoor and outdoor experiments by manufacturing a tipping bucket rain gauge that can be variably controlled for heating at the funnel, exterior, and interior, and indoor and outdoor. The indoor experiments involved using a temperature and humidity chamber to compare the performance and derive the appropriate temperature of the precipitation gauge heating system. Subsequently, the outdoor experiments were carried out at the Cloud Physics Observation Center located in Daeguallyeong, heavy snowfall region, to validate the findings. The analysis result was derived that the heating temperature of the funnel should be set at the 10 to 30℃, while the internal heating temperature should be 70℃. Furthermore, the optimal locations for the heating devices, which aim to minimize measurement delay, were identified as the exterior of the rain gauge, the rim of the funnel, and the vertical surface of the funnel. Our result shows that used as the basis for the operating conditions of precipitation gauge heating systems for solid precipitation measurement in winter.

An Observation System of Hemisphere Space with Fish eye Image and Head Motion Detector

  • Sudo, Yoshie;Hashimoto, Hiroshi;Ishii, Chiharu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.663-668
    • /
    • 2003
  • This paper presents a new observation system which is useful to observe the scene of the remote controlled robot vision. This system is composed of a motionless camera and head motion detector with a motion sensor. The motionless camera has a fish eye lens and is for observing a hemisphere space. The head motion detector has a motion sensor is for defining an arbitrary subspace of the hemisphere space from fish eye lens. Thus processing the angular information from the motion sensor appropriately, the direction of face is estimated. However, since the fisheye image is distorted, it is unclear image. The partial domain of a fish eye image is selected by head motion, and this is converted to perspective image. However, since this conversion enlarges the original image spatially and is based on discrete data, crevice is generated in the converted image. To solve this problem, interpolation based on an intensity of the image is performed for the crevice in the converted image (space problem). This paper provides the experimental results of the proposed observation system with the head motion detector and perspective image conversion using the proposed conversion and interpolation methods, and the adequacy and improving point of the proposed techniques are discussed.

  • PDF

VLBI Type Experimental Observation of GPS

  • Kwak, Young-Hee;Kondo, Tetsuro;Amagai, Jun;Gotoh, Tadahiro;Sasao, Tetsuo;Cho, Jung-Ho;Kim, Tu-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.173-180
    • /
    • 2010
  • As a preparatory study for Global Positioning System-Very Long Baseline Interferometry (GPS-VLBI) hybrid system, we examined if VLBI type observation of the GPS signal is realizable through a test experiment. The test experiment was performed between Kashima and Koganei, Japan, with 110 km baseline. The GPS L1 and L2 signals were received by commercial GPS antennas, down-converted to video-band signals by specially developed GPS down converters, and then sampled by VLBI samplers. The sampled GPS data were recorded as ordinary VLBI data by VLBI recorders. The sampling frequency was 64 MHz and the observation time was 1 minute. The recorded data were correlated by a VLBI correlator. From correlation results, we simultaneously obtained correlation fringes from all 8 satellites above a cut-off elevation which was set to 15 degree. 87.5% of L1 fringes and 12.5% of L2 fringes acquired the Signal to Noise Ratios which are sufficient to achieve the group delay precision of 0.1nsec that is typical in current geodetic VLBI. This result shows that VLBI type observation of GPS satellites will be readily realized in future GPS-VLBI hybrid system.

A Design of Air Compressor Remote Control System Using USN Technology (USN 기술을 이용한 공기압축기 원격관리 시스템 설계)

  • Hwang, Moon-Young
    • Korean Journal of Artificial Intelligence
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Compressed Air is an important energy source used in most factories nowadays. The automation trend using air compressor has been gradually increasing with the interest of the 4th industry in recent years. With the air compressor system, it is possible to construct the device at low cost and easily achieve automation and energy saving. In addition, With trend of FA, miniaturation and light weight manufacturing trend expand their use in the electronics, medical, and food sectors. Research method is to design the technology for the remote control of the following information as USN base. Development of flexible sensing module from real time observation module for fusion of IT technology in compressed air systems, design and manufacture of flexible sensing module, and realiability assessment. Design of real-time integrated management system for observation data of compressed air system - Ability to process observation data measured in real time into pre-processing and analysis data. This study expects unconventionally decreasing effect of energy cost that takes up 60~70% of air compressor layout and operation and maintenance management cost through USN(Ubiquitous Sensor Network) technology by using optimum operational condition from real time observation module. In addition, by preventing maintenance cost from malfunction of air compressor beforehand, maintenance cost is anticipated to cut back.

REMOTE OBSERVATION SYSTEM ON WORLD WIDE WEB (WWW를 이용한 원격관측시스템)

  • PARK BYEONG-GON;YUK IN-SOO;HAN INWOO;KIM SEUNG-LEE;CHUN MOO-YOUNG;SEONG HYEON-CHEOL
    • Publications of The Korean Astronomical Society
    • /
    • v.13 no.1 s.14
    • /
    • pp.75-84
    • /
    • 1998
  • We present the development of a remote observation system runnig on world wide web (WWW). The system consists of a 30cm Schmidt Cassegrain telescope and ST-7 CCD camera. We built the controllers and drivers of the telescope and the control softwares including the network control. The self-developed techniques in the hard wares and softwares can be applied to other projects in Korea. Observers can access the system via WWW home page, to reserve observation times, to send control commands, to retrieve images and various information useful for observation. This system can be widely used by students and amateur astronomers as well as professional astronomers who need a lot of small telescope time.

  • PDF

An Observation Supporting System for Predicting Citrus Fruit Production

  • Kang, Hee Joo;Yoo, Seung Tae;Yang, Young Jin
    • Agribusiness and Information Management
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • The purpose of this study is to develop a growth prediction model that can predict growth and development information influencing the production of citrus fruits: the growth model algorithm that can predict floral leaf ratio, number of fruit sets, fruit width, and overweight depending on the main period of growth and development with consideration of the applied weather factors. Every year, large scale of manpower was mobilized to investigate the production of outdoor-grown citrus fruits, but it was limited to recycling the data without an observation supporting system to systemize the database. This study intends to create a systematical database based on the basic data obtained through the observation supporting system in application of an algorithm according to the accumulated long term data and prepare a base for its continuous improvement and development. The importance of the observed data is increasingly recognized every year, and the citrus fruit observation supporting system is important for utilizing an effective policy and decision making according to various applications and analysis results through an interconnection and an integration of the investigated statistical data. The citrus fruit is a representative crop having a great ripple effect in Jeju agriculture. An early prediction of the growth and development information influencing the production of citrus fruits may be helpful for decision making in supply and demand control of agricultural products.