• Title/Summary/Keyword: Observation Scale

Search Result 813, Processing Time 0.028 seconds

Scientific Empathy Discovered in Scientists' Problem-Solving Process (과학자의 문제 해결 과정에서 탐색된 과학 공감)

  • Yang, Heesun;Kang, Seong-Joo
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.2
    • /
    • pp.249-261
    • /
    • 2019
  • The purpose of this study is to extract empathy factor in scientists' problem-solving process and to examine how the empathy factor influences scientists' problem-solving situation. In this study, we selected six common persons among the scientists mentioned by creativity researchers. And through their autobiographies and biographies, we extracted elements of empathy from their case of problem-solving and categorized them. We analyzed cases from 12 books and 50 papers using Davis' empathy scale as an analysis framework and extracted common factors. As a result, the scientific empathy elements were extracted from a total of 182 cases, and 33 common elements were found. The validity of this case was verified through the content validity test of the science education specialist group. As a result, the I-CVI average was .86 and the S-CVI average was .90. For the empathy elements that scientists used in problem-solving cases, in cognitive empathy, three elements (empathy through other disciplines, empathy from the perspective of the research object, accommodating others' opinions) were extracted in terms of perspective-taking, and three elements (imagination thought experiment based on observation, thought experiment, feeling like part of object) in fantasy. And in affective empathy, three elements (influenced by fellow researchers' motivation, touching from the subject, excitement studying more) were extracted in terms of empathic concern and two elements (heartache for others' failure in their research, sensitivity to problems) in personal depression. This could not be said to be a perfect match for Davis' empathy, but it would be possible to define the scientific empathy elements based on these common elements found in the scientists' cases.

An Analysis of Water Vapor Pressure to Simulate the Relative Humidity in Rural and Mountainous Regions (고해상도 상대습도 모의를 위한 농산촌 지역의 수증기압 분석)

  • Kim, Soo-ock;Hwang, Kyu-Hong;Hong, Ki-Young;Seo, Hee-Chul;Bang, Ha-Neul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.299-311
    • /
    • 2020
  • This paper analyzes the distribution of water vapor pressure and relative humidity in complex terrains by collecting weather observation data at 6 locations in the valley in Jungdae-ri, Ganjeon-myeon, Gurye-gun, Jeolla South Province and 14 locations in Akyang-myeon, Hadong-gun, Gyeongsang South Province, which form a single drainage basin in rural and mountainous regions. Previously estimated water vapor pressure used in the early warning system for agrometeorological hazard and actual water vapor pressure arrived at using the temperature and humidity that were measured at the highest density (1.5 m above ground) at every hour in the valley of Jungdae-ri between 19 December 2014 and 23 November 2015 and in the valley of Akyang between 15 August 2012 and 18 August 2013 were compared. The altitude-specific gradient of the observed water vapor pressure varied with different hours of the day and the difference in water vapor pressure between high and low altitudes increased in the night. The hourly variations in the water vapor pressure in the weather stations of the valley of Akyang with various topographic and ground conditions were caused by factors other than altitude. From the observed data of the study area, a coefficient that adj usts the variation in the water vapor pressure according to the specific difference in altitude and estimates it closer to the actual measured level was derived. Relative humidity was simulated as water vapor pressure estimated against the saturated water vapor pressure, thus, confirming that errors were further reduced using the derived coefficient than with the previous method that was used in the early warning system.

Development and Application TEP Activity for the Education of Experimental Apparatus at Elementary School (초등학생의 실험기구 교육을 위한 TEP 활동의 개발 및 적용)

  • Jeon, Soyeon;Park, Jongseok
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.6
    • /
    • pp.379-388
    • /
    • 2020
  • The purpose of this study are to develop the TEP activity for learning experimental apparatus at elementary school and to test the effects of the TEP activity. This study consists of two steps. First through literature research on the difficulties and needs of experimental apparatus education developed the form that how to educate the experimental apparatus at elementary school. Second, applied the TEP activity and figured out the effects as two aspect(knowledge about experimental apparatus and actual using skill during lesson). This worksheet was applied to 3rd grade students in elementary school about 4 experimental apparatuses(Beaker, Electronic scale, Glass rod, Spatula). The results of this study are as follows: There is no specific time to teach what is and how to use experimental apparatus by regular curriculum. So many students and teachers need method and time to learn them. Also they want to lots of opportunities to use them. With that needs given previously, TEP activity developed by 3 steps. 1. Trigger interest 2. Explore experimental apparatus: learned knowledges about experimental apparatus focused on appearance(name, purpose, directions for use, precautions) 3. Practice experimental apparatus: actual using time to acquire skills. After that did the survey of knowledge and observation of students' behavior during usual class to confirm the effects. According to the results, TEP activity helped the students to improve there awareness of the experimental apparatus and actual using skills.

A Study on Future Changes of Sea Surface Temperature and Ocean Currents in Northwest Pacific through CMIP6 Model Analysis (CMIP6 모형 결과 분석을 통한 북서태평양 해면수온과 해류의 미래변화에 대한 고찰)

  • JEONG, SUYEON;CHOI, SO HYEON;KIM, YOUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.291-306
    • /
    • 2021
  • From the climate change scenario experiments of 21 models participating in Coupled Climate Model Inter-comparison Project Phase 6, future changes of sea surface temperature (SST) and Kuroshio in the Northwest Pacific were analyzed. The spatial feature of SST change was found to be related to the change of the current speed and spatial distribution of Kuroshio. To investigate the relationship between the change in latitude of the Kuroshio extension region, which flows along the boundary between the subtropical gyre and the subarctic gyre in the North Pacific, and the large-scale atmospheric circulation due to global warming, the zero-windstress curl line for each climate change experiment from 9 out of 21 models were compared. As the atmospheric radiative forcing increases due to the increase of greenhouse gases, it was confirmed that the zero-windstress curl line moves northward, which is consistent with the observation. These results indicate that as the Hadley Circulation expands to the north due to global warming, the warming of the mid-latitudes to which the Korean Peninsula belongs may be accelerated. The volume transport and temperature of the Tsushima Warm Current flowing into the East Sea through the Korea Strait also increased as the atmospheric radiative forcing increased.

Estimates on the Long-term Landform Changes Near Sinduri Beaches (신두리 해빈 장기해안지형변화 탐지 및 추정)

  • Yun, Konghyun;Lee, Chang Kyung;Kim, Gyung Soo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1315-1328
    • /
    • 2022
  • Sinduri beach is a typical sedimentary landform that forms sand dunes due to the influence of the northwest wind in winter. Due to the its large scale and well-developed nature, it has been recognized for conservation value and is currently designated as Natural Monument No. 431, and continuous monitoring is required in terms of the preservation of topographical values. In this study, aerial images, drone images, and drone-based LiDAR data during 36 years were used for long-term topographical change observation of the Sinduri coastal sand dunes located in Taean-gun, Chungcheongnam-do. To implement this, the amount of change in elevation and volume for each period was calculated by applying the difference of Digital Elevation Model (DEM) based on raster calculation using the numerical elevation model generated from the raw data. Also, the amount of change in volume based on probability was calculated using the error propagation law for the intrinsic error of each data source. As a result, it can be seen that from 1986 to 2022, deposition of 35,119 m3 occurred in region of interest A (area: 17,960 m2) and 54,954 m3 of deposition occurred in region of interest B (area: 17,686 m2).

Research of Water-related Disaster Monitoring Using Satellite Bigdata Based on Google Earth Engine Cloud Computing Platform (구글어스엔진 클라우드 컴퓨팅 플랫폼 기반 위성 빅데이터를 활용한 수재해 모니터링 연구)

  • Park, Jongsoo;Kang, Ki-mook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1761-1775
    • /
    • 2022
  • Due to unpredictable climate change, the frequency of occurrence of water-related disasters and the scale of damage are also continuously increasing. In terms of disaster management, it is essential to identify the damaged area in a wide area and monitor for mid-term and long-term forecasting. In the field of water disasters, research on remote sensing technology using Synthetic Aperture Radar (SAR) satellite images for wide-area monitoring is being actively conducted. Time-series analysis for monitoring requires a complex preprocessing process that collects a large amount of images and considers the noisy radar characteristics, and for this, a considerable amount of time is required. With the recent development of cloud computing technology, many platforms capable of performing spatiotemporal analysis using satellite big data have been proposed. Google Earth Engine (GEE)is a representative platform that provides about 600 satellite data for free and enables semi real time space time analysis based on the analysis preparation data of satellite images. Therefore, in this study, immediate water disaster damage detection and mid to long term time series observation studies were conducted using GEE. Through the Otsu technique, which is mainly used for change detection, changes in river width and flood area due to river flooding were confirmed, centered on the torrential rains that occurred in 2020. In addition, in terms of disaster management, the change trend of the time series waterbody from 2018 to 2022 was confirmed. The short processing time through javascript based coding, and the strength of spatiotemporal analysis and result expression, are expected to enable use in the field of water disasters. In addition, it is expected that the field of application will be expanded through connection with various satellite bigdata in the future.

Review of Remote Sensing Applicability for Monitoring Marine Microplastics (해양 미세플라스틱 모니터링을 위한 원격탐사 적용 가능성 검토)

  • Park, Suhyeon;Kim, Changmin;Jeong, Seongwoo;Jang, Seonggan;Kim, Subeen;Ha, Taejung;Han, Kyung-soo;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.835-850
    • /
    • 2022
  • Microplastics have arisen as a worldwide environmental concern, becoming ubiquitous in all marine compartments, and various researches on monitoring marine microplastics are being actively conducted worldwide. Recently, application of a remote detection technology that enables large-scale real-time observation to marine plastic monitoring has been conducted overseas. However, in South Korea, there is little information linking remote detection to marine microplastics and some field studies have demonstrated remote detection of medium- and large-sized marine plastics. This study introduces research cases with remote detection of marine plastics in South Korea and overseas, investigates potential feasibility of using the remote detection technology to marine microplastic monitoring, and suggests some future works to monitor marine microplastics with the remote detection.

A Study on the Optimal Site Selection by Constraint Mapping and Park Optimization for Offshore Wind Farm in the Southwest Coastal Area (서남해 연안 해상풍력 발전단지 지리적 적합지 선정 및 최적배치에 관한 연구)

  • Jung-Ho, Kim;Geon-Hwa, Ryu;Hong-Chul, Son;Young-Gon, Kim;Chae-Joo, Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1145-1156
    • /
    • 2022
  • In order to effectively secure site suitability for the development of large-scale offshore wind farms, it is essential to minimize the environmental impact of development and analyze the conflicts of benefit between social, ecological, and economic core values. In addition, a preliminary review of site adequacy must be preceded in order not to collide with other used areas in the marine spatial plan. In addition, it is necessary to conduct local meteorological characteristics analysis including wind resources near Jeollanam-do area before project feasibility study. Therefore, wind resource analysis was performed using the observation data of the meteorological mast installed in Wangdeungnyeo near Anmado, Yeonggwang, and the optimal site was selected after excluding geographical constraints related to the location of the offshore wind farm. In addition, the annual energy production was calculated by deriving the optimal wind farm arrangement results suitable for the local wind resources characteristics based on WindSim SW, and it is intended to be used as basic research data for site discovery and selection of suitable sites for future offshore wind farm projects.

Analysis of Low Altitude Wind Profile Data from Wind Lidar for Drone Aviation Safety (드론의 안전 비행을 위한 윈드라이다 저고도 바람 분석 방법 제시)

  • Kim, Je-Won;Ryu, Jung-Hee;Na, Seong-Jun;Seong, Seong-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.899-907
    • /
    • 2022
  • According to the Unmanned aircraft system Traffic Management (UTM), drones are permitted to fly up to 150m above ground, which is located in the atmospheric boundary layer where there is considerable wind fluctuation due to turbulence. Although it is difficult to predict when turbulence will occur drone aviation safety could be enhanced by having a better understanding of the characteristics of vertical profile of wind in the flight area. We used wind lidar (WIndMast 350M) to observe vertical profiles of wind at the test site for aviation meteorological observation equipment located near Incheon International Airport in July and September, 2022. In this study, we utilized the observed wind profile data to propose a technique for obtaining information that could help improve the drone aviation safety. The Fourier transform analysis is used to evaluate the temporal characteristics of the horizontal wind speed at various vertical levels up to 350m. We also examined the relative contribution of the variance of wind having scales of less than an hour, a crucial scale for drone flight, to the variance of wind having all scales at each vertical altitude for days with and without precipitation.

Analysis on Results and Changes in Recent Forecasting of Earthquake and Space Technologies in Korea and Japan (한국과 일본의 지진재해 및 우주이용 기술예측에 대한 최근의 변화 분석)

  • Ahn, Eun-Young
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.421-428
    • /
    • 2022
  • This study analyzes emerging earthquake and space use technologies from the latest Korean and Japanese scientific and technological foresights in 2022 and 2019, respectively. Unlike the earthquake prediction and early warning technologies presented in the 2017 study, the emerging earthquake technologies in 2022 in Korea was described as an earthquake/complex disaster information technology and public data platform. Many detailed future technologies were presented in Japan's 2019 survey, which includes largescale earthquake prediction, induced earthquake, national liquefaction risk, wide-scale stress measurement; and monitoring by Internet of Things (IoT) or artificial intelligence (AI) observation & analysis. The latest emerging space use technology in Korea and Japan were presented in more detail as robotic mining technology for water/ice, Helium-3, and rare earth metals, and manned station technology that utilizes local resources on the moon and Mars. The technological realization year forecasting in 2019 was delayed by 4-10 years from the prediction in 2015, which could be greater due to the Corona 19 epidemic, the declaration of carbon neutrality in Korea and Japan in 2020 and the Russo-Ukrainian War in 2022. However, it is required to more active research on earthquake and space technologies linked to information technology.