• Title/Summary/Keyword: Objective parameter

Search Result 902, Processing Time 0.023 seconds

Optimal placement of elastic steel diagonal braces using artificial bee colony algorithm

  • Aydin, E.;Sonmez, M.;Karabork, T.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.349-368
    • /
    • 2015
  • This paper presents a new algorithm to find the optimal distribution of steel diagonal braces (SDB) using artificial bee colony optimization technique. The four different objective functions are employed based on the transfer function amplitude of; the top displacement, the top absolute acceleration, the base shear and the base moment. The stiffness parameter of SDB at each floor level is taken into account as design variables and the sum of the stiffness parameter of the SDB is accepted as an active constraint. An optimization algorithm based on the Artificial Bee Colony (ABC) algorithm is proposed to minimize the objective functions. The proposed ABC algorithm is applied to determine the optimal SDB distribution for planar buildings in order to rehabilitate existing planar steel buildings or to design new steel buildings. Three planar building models are chosen as numerical examples to demonstrate the validity of the proposed method. The optimal SDB designs are compared with a uniform SDB design that uniformly distributes the total stiffness across the structure. The results of the analysis clearly show that each optimal SDB placement, which is determined based on different performance objectives, performs well for its own design aim.

DEVELOPMENT OF A SOUND QUALITY INDEX FOR THE EVALUATION OF BOOMING NOISE OF A PASSENGER CAR BASED ON REGRESSIVE CORRELATION

  • LEE J. K.;PARK Y. W.;CHAI J. B.;JANG H. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.367-374
    • /
    • 2005
  • This paper proposes a sound quality index to evaluate the vehicle interior noise. The index was developed using a correlation analysis of an objective measurement and a subjective evaluation data. First, the objective set of measurements was obtained at two specified driving conditions. One is from a wide-open test condition and the other is from a constant-speed test condition. At the same time, subjective evaluation was carried out using a score of ten scale where 17 test engineers participated in the experiment. The correlation analysis between the psycho-acoustic parameters derived from the objective measurement and the subjective evaluation was performed. The most critical factors at both test conditions were determined, and the corresponding equations for the sound quality were obtained from the multiple factor regression method. Finally, a comparative work between previous index and present index was performed to validate the effectiveness of the proposed index.

Optimum Sensitivity of Objective Function Using Equality Constraint (등제한조건을 이용한 목적함수에 대한 최적민감도)

  • Shin Jung-Kyu;Lee Sang-Il;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1629-1637
    • /
    • 2005
  • Optimum sensitivity analysis (OSA) is the process to find the sensitivity of optimum solution with respect to the parameter in the optimization problem. The prevalent OSA methods calculate the optimum sensitivity as a post-processing. In this research, a simple technique is proposed to obtain optimum sensitivity as a result of the original optimization problem, provided that the optimum sensitivity of objective function is required. The parameters are considered as additional design variables in the original optimization problem. And then, it is endowed with equality constraints to penalize the additional variables. When the optimization problem is solved, the optimum sensitivity of objective function is simultaneously obtained as Lagrange multiplier. Several mathematical and engineering examples are solved to show the applicability and efficiency of the method compared to other OSA ones.

Decentralized Load-Frequency Control of Interconnected Power Systems with SMES Units and Governor Dead Band using Multi-Objective Evolutionary Algorithm

  • Ganapathy, S.;Velusami, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.443-450
    • /
    • 2009
  • This paper deals with the design of decentralized controller for load-frequency control of interconnected power systems with superconducting magnetic energy storage units and Governor Dead Band Nonlinearity using Multi-Objective Evolutionary Algorithm. The superconducting magnetic energy storage unit exhibits favourable damping effects by suppressing the frequency oscillations as well as stabilizing the inter-area oscillations effectively. The proposed control strategy is mainly based on a compromise between Integral Squared Error and Maximum Stability Margin criteria. Analysis on a two-area interconnected thermal power system reveals that the proposed controller improves the dynamic performance of the system and guarantees good closed-loop stability even in the presence of nonlinearities and with parameter changes.

Effects of Model Complexity, Structure and Objective Function on Calibration Process (모형의 복잡성, 구조 및 목적함수가 모형 검정에 미치는 영향)

  • Choi, Kyung Sook
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.89-97
    • /
    • 2003
  • Using inference models developed for estimation of the parameters necessary to implement the Runoff Block of the Stormwater Management Model (SWMM), a number of alternative inference scenarios were developed to assess the influence of inference model complexity and structure on the calibration of the catchment modelling system. These inference models varied from the assumption of a spatially invariant value (catchment average) to spatially variable with each subcatchment having its own unique values. Fur-thermore, the influence of different measures of deviation between the recorded information and simulation predictions were considered. The results of these investigations indicate that the model performance is more influenced by model structure than complexity, and control parameter values are very much dependent on objective function selected as this factor was the most influential for both the initial estimates and the final results.

A Benefit Analysis of Using Common Random Numbers When Optimizing a System by Simulation Experiments (시뮬레이션을 통한 시스템 최적화 과정에서 공통 난수 활용의 이점 분석)

  • 박진원
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.4
    • /
    • pp.1-10
    • /
    • 2000
  • One of the primary goals of the simulation experiments is to understand the overall system behavior and to analyze the system, ultimately to optimize the system. Optimizing the system includes determining the optimum condition of the system parameters of interest. This paper is concerned with the simulation methodology for estimating the unknown objective function for the system of interest and optimizing the system with respect to the controllable factors. In the process of estimating the unknown objective function, which is assumed to be a second order spline function, we use common random numbers for different set of the controllable factors resulting in more accurate parameter estimation for the objective function. We will show some mathematical result for the benefit of using common random numbers.

  • PDF

Optimum Sensitivity of Objective Function using Equality Constraint (등제한조건을 이용한 목적함수에 대한 최적민감도)

  • Yi S.I.;Shin J.K.;Park G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.464-469
    • /
    • 2005
  • Optimum sensitivity analysis (OSA) is the process to find the sensitivity of optimum solution with respect to the parameter in the optimization problem. The prevalent OSA methods calculate the optimum sensitivity as a post-processing. In this research, a simple technique is proposed to obtain optimum sensitivity as a result of the original optimization problem, provided that the optimum sensitivity of objective function is required. The parameters are considered as additional design variables in the original optimization problem. And then, it is endowed with equality constraints to penalize the additional variables. When the optimization problem is solved, the optimum sensitivity of objective function is simultaneously obtained as Lagrange multiplier. Several mathematical and engineering examples are solved to show the applicability and efficiency of the method compared to other OSA ones.

  • PDF

Multi-objective optimization application for a coupled light water small modular reactor-combined heat and power cycle (cogeneration) systems

  • Seong Woo Kang;Man-Sung Yim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1654-1666
    • /
    • 2024
  • The goal of this research is to propose a way to maximize small modular reactor (SMR) utilization to gain better market feasibility in support of carbon neutrality. For that purpose, a comprehensive tool was developed, combining off-design thermohydraulic models, economic objective models (levelized cost of electricity, annual profit), non-economic models (saved CO2), a parameter input sampling method (Latin hypercube sampling, LHS), and a multi-objective evolutionary algorithm (Non-dominated Sorting Algorithm-2, NSGA2 method) for optimizing a SMR-combined heat and power cycle (CHP) system design. Considering multiple objectives, it was shown that NSGA2+LHS method can find better optimal solution sets with similar computational costs compared to a conventional weighted sum (WS) method. Out of multiple multi-objective optimal design configurations for a 105 MWe design generation rating, a chosen reference SMR-CHP system resulted in its levelized cost of electricity (LCOE) below $60/MWh for various heat prices, showing economic competitiveness for energy market conditions similar to South Korea. Examined economic feasibility may vary significantly based on CHP heat prices, and extensive consideration of the regional heat market may be required for SMR-CHP regional optimization. Nonetheless, with reasonable heat market prices (e.g. district heating prices comparable to those in Europe and Korea), SMR can still become highly competitive in the energy market if coupled with a CHP system.

Optimization of Parameters for LCL Filter of Least Square Method Based Three-phase PWM Converter

  • Zheng, Hong;Liang, Zheng-feng;Li, Meng-shu;Li, Kai
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1626-1634
    • /
    • 2015
  • LCL filters are widely used in three-phase PWM converter for its advantages of small volume, low cost and inhibition of high frequency current harmonic. However, it is difficult to optimize its design because its parameters are mutually influenced while the value of each parameter for LCL filter has impacts on the converter's cost and size. In this paper, the target of optimization is to minimize the parameter values of LCL filter, and an optimization method for parameters of LCL filter of three-phase PWM converter based on least square method is proposed. With this method, a quantitative calculation of the harmonic component of the converter’s side phase voltage is performed first, and then the quantitative relationship between phase voltage harmonics and grid phase current harmonics is analyzed. After that, the attenuation requirement of each harmonic is obtained by taking into account the requirements for each harmonic component of grid current. Then according to the optimization objective, the objective function with minimum harmonic attenuation deviation is established, and least squares method is adopted for three-dimensional global searching of parameters for LCL filter. Thus, the designed harmonic attenuation curve approximates the minimum attenuation requirements, and the optimized LCL filter parameters are obtained. Finally, the effectiveness of the method is verified by the experiments.

A Study on Suction Pump Impeller Form Optimization for Ballast Water Treatment System (선박평형수 처리용 흡입 펌프 임펠러 형상 최적화 연구)

  • Lee, Sang-Beom
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.121-129
    • /
    • 2022
  • With the recent increase in international trade volume the trade volume through ships is also continuously increasing. The treatment of ballast water goes through the following five steps, samples are taken and analyzed at each step, and samples are obtained using a suction pump. These suction pumps have low efficiency and thus need to be improved. In this study, it is to optimize the form of the impeller which affects directly improvements of performance to determine the capacity of suction pump and to fulfill the purpose of this research. To do it, we have carried out parametric design as an input variable, geometric form for the impeller. By conducting the flow analysis for the optimum form, it has confirmed the value of improved results and achieved the purpose to study in this paper. It has selected the necessary parameter for optimizing the form of the pump impeller and analyzed the property using experiment design. And it can reduce the factor of parameter for local optimization from findings to analyze the property of form parameter. To perform MOGA(Multi-Objective Genetic Algorithm) it has generated response surface using parameters for local optimization and conducts the optimization using multi-objective genetic algorithm. with created experiment cases, it has performed the computational fluid dynamics with model applying the optimized impeller form and checked that the capacity of the pump was improved. It could verify the validity concerning the improvement of pump efficiency, via optimization of pump impeller form which is suggested in this study.