• 제목/요약/키워드: Objective Lens

검색결과 223건 처리시간 0.029초

The Optical Design of Miniaturized Microscope Objective for CARS Imaging Catheter with Fiber Bundle

  • Rim, Cheon-Seog
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.424-430
    • /
    • 2010
  • In coherent anti-Stokes Raman scattering (CARS) microscopy reported until now, conventional microscope objectives are used, so that they are limited for introduction into a living body. Gradient-index (GRIN) rod lenses might be a solution for miniaturized microscope objectives for in-vivo CARS microscopy. However, due to the inherent large amount of chromatic aberration, GRIN rod lenses cannot be utilized for this purpose. CARS imaging catheter, composed of miniaturized microscope objective and fiber bundle, can be introduced into a living body for minimally invasive diagnosis. In order to design the catheter, we have to first investigate design requirements. And then, the optical design is processed with design strategies and intensive computing power to achieve the design requirements. We report the miniaturized objective lens system with diffraction-limited performance and completely corrected chromatic aberrations for an in-vivo CARS imaging catheter.

초정밀가공기를 이용한 SIL 렌즈의 절삭특성 (The Characteristics of SIL Lens Machining Using Diamond Turning Machine)

  • 원종호;박원규;김주환;김건희
    • 한국기계가공학회지
    • /
    • 제2권1호
    • /
    • pp.63-68
    • /
    • 2003
  • The aspherical lenses are used as objective lens of optical pickup. To examine the design factor the sample product is made before manufacturing of injection mould of lens. The optimum cutting condition of PMMA lens sample with ultra precision SPDT, the roam spindle speed, the depth of cut, the feedrate are found. The demanded surface roughness 100m Ra, aspherical form error $0.5{\mu}m$ P-V for aspherical lens of optical data storage device are satisfied.

  • PDF

광 정보저장용 픽업 렌즈의 다이아몬드 터닝 가공 (Diamond turning of pick-up lens for optical application)

  • 박순섭;김대중;이봉주;김상석;김정호;유영문;김주하
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.525-528
    • /
    • 2003
  • The aspherical lens are used as objective lens of optical pickup. The sample product is made before manufacturing the injection mould of lens to examine the design factor. The optimum cutting conditions of the main spindle speed, the depth of cut, the feed rate are found when we cut PMMA and PC lens sample with ultra-precision SPDT. The demanded surface roughness 10 nm Ra. aspherical form error 0.5 ${\mu}{\textrm}{m}$ P-V for aspherical lens of optical data storage device are satisfied for PMMA. but not satisfied for PC.

  • PDF

다이아몬드 터닝가공을 이용한 광정보저장용 픽업렌즈 제작 (Pick-up Lens Manufacturing for Optical application using Diamond Turning Process)

  • 김정호;김상석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 제6회 학술대회 논문집 일렉트렛트 및 응용기술연구회
    • /
    • pp.47-51
    • /
    • 2004
  • The aspherical lens are used as objective lens of optical pickup. The sample product is made before manufacturing the injection mould of lens to examine the design factor. The optimum cutting conditions of the main spindle speed, the depth of cut, the feed rate are found when we cut PMMA and PC lens sample with ultra-precision SPDT. The demanded surface roughness 10 nm Ra, aspherical form error 0.5 ${\mu}m$ P-V for aspherical lens of optical data storage device are satisfied for PMMA, but not satisfied for PC.

  • PDF

초소형 광정보저장기기용 웨이퍼 스케일 대물렌즈 제작을 위한 회절광학소자 성형기술 개발 (Fabrication of Diffractive Optical Element for Objective Lens of Small form Factor Data Storage Device)

  • 배형대;임지석;정기봉;한정원;유준모;박노철;강신일
    • 소성∙가공
    • /
    • 제15권1호
    • /
    • pp.3-8
    • /
    • 2006
  • The demand fer small and high-capacity optical data storage devices has rapidly increased. The areal density of optical disk is increased by using higher numerical aperture objective lens and shorter wavelength source. A wafer-scale stacked micro objective lens with a numerical aperture of 0.85 and a focal length of 0.467mm for the 405nm blue- violet laser was designed and fabricated. A diffractive optical element (DOE) was used to compensate the spherical aberration of the objective lens. Among the various fabrication methods for micro DOE, the UV-replication process is more suitable fur mass-production. In this study, an 8-stepped DOE pattern as a master was fabricated by photolithography and reactive ion etching process. A flexible mold was fabricated for improving the releasing properties and shape accuracy in UV-replication process. In the replication process, the effects of exposing time and applied pressure on the replication quality were analyzed. Finally, the surface profiles of master, mold and molded pattern were measured by optical scanning profiler. The geometrical deviation between the master and the molded DOE was less than $0.1{\mu}m$. The diffraction efficiency of the molded DOE was measured by DOE efficiency measurement system which consists of laser source, sample holder, aperture and optical power meter, and the measured value was $84.5\%$.

초소형 광정보저장기기용 웨이퍼 스케일 대물렌즈 제작을 위한 회절광학소자 성형기술 개발 (Fabrication of diffractive optical element for objective lens of small form factor data storage device)

  • 배형대;임지석;정기봉;한정원;유준모;박노철;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.35-40
    • /
    • 2005
  • The demand for small and high-capacity optical data storage devices has rapidly increased. The areal density of optical disk is increased using higher numerical aperture objective lens and shorter wavelength source. A wafer-scale stacked micro objective lens with a numerical aperture of 0.85 and a focal length of 0.467mm for the 405nm blue- violet laser was designed and fabricated. A diffractive optical element (DOE) was used to compensate the spherical aberration of the objective lens. Among the various fabrication methods for micro DOE, the UV-replication process is more suitable for mass-production. In this study, an 8-stepped DOE pattern as a master was fabricated by photolithography and reactive ion etching process. A flexible mold was fabricated for improving the releasing properties and shape accuracy in UV-molding process. In the replication process, the effects of exposing time and applied pressure on the replication quality were analyzed. Finally, the shapes of master, mold and molded pattern were measured by optical scanning profiler. The deviation between the master and the molded DOE was less than 0.1um. The efficiency of the molded DOE was measured by DOE efficiency measurement system which consists of laser source, sample holder, aperture and optical power meter, and the measured value was $84.5\%$.

  • PDF

SIMION 시뮬레이터를 이용한 정전렌즈의 빔 집속 성능 (Beam Focusing Performance of Electrostatic Lens using SIMION Simulator)

  • 오맹호;정인승;이종항
    • 한국정밀공학회지
    • /
    • 제26권4호
    • /
    • pp.128-133
    • /
    • 2009
  • Focused-ion-beam (FIB) system is capable of both machining and measuring in nano-scale; hence nano-scale focusing quality is important. This paper investigates design parameters of two electrostatic lenses in order to achieve the best ion beam focusing performance. Commercial SIMION simulator is used to optimize the dimensions of the condenser and objective lenses and investigate the influence of assembly error on focusing quality The simulation results show that the beam focusing quality is not influenced by angle deviation within ${\pm}0.02\;deg$ and geometrical eccentricity within ${\pm}50$ micrometers.

비점수차법을 이용한 변위센서 개발 (Micro Displacement Sensor Using an Astigmatic Method)

  • 이창우;송준엽;하태호;김준현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.257-258
    • /
    • 2006
  • This paper presents the displacement sensor based on astigmatic method that has a small measurement range. The sensor has the characteristic that the measuring range is changed easily by exchanging a objective lens or distance between a objective lens and a collimator lens. The measuring range and resolution is evaluated by a laser interferometer.

  • PDF

더블렛+메니스커스렌즈 대물부를 가지는 3X 스코프 개발 (Development of 3X Scope with Objective Configured with Doublet+Meniscus Lens)

  • 이동희;박승환
    • 한국안광학회지
    • /
    • 제19권4호
    • /
    • pp.487-492
    • /
    • 2014
  • 목적: 대물부의 구성이 더블렛+메니스커스 렌즈를 가지는 3X 스코프 개발에 관한 것이다. 방법: 더블렛(doublet) + 단일렌즈(singlet)의 구성을 가지는 대물부를 초기조건으로 하여 대물부의 유한광선 수차와 스코프 전체 광학계의 유한광선 수차를 최소화하도록 스코프 광학계를 최적화하여 새로운 형태의 3X 스코프를 개발하였다. 결과: 대물부의 구성을 더블렛+단일렌즈로 두고 유한광선 수차를 최소화하도록 스코프 광학계를 최적화를 하였을 때 우리는 단일렌즈는 더블렛 방향으로 오목한 메니스커스 형태의 렌즈가 되며, 더블렛과 메니스커스 렌즈 사이의 거리가 멀수록 유한광선 수차는 더욱 최소화됨을 확인할 수 있었다. 결론: 본 연구에서 우리는 3X 스코프의 대물부를 더블렛+메니스커스 렌즈 방식의 3매의 렌즈를 채택함으로서 기존의 스코프보다 유한광선 수차를 약 1/14로 줄일 수 있는 새로운 형태의 3X 스코프를 개발할 수 있었다. 이러한 수차량의 감소는 기존 스코프 보다 유효 구경을 크게 할 수 있으며 광학계의 길이를 짧게 할 수 있는 수단이 됨을 확인할 수 있었다.

공명초음파분광법을 활용한 광학기기용 렌즈의 결함평가 (Defect Evaluation of Optical Lens by Resonant Ultrasound Spectroscopy)

  • 김성훈;백경윤;김영남;양인영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1491-1495
    • /
    • 2004
  • In this paper, resonant ultrasound spectroscopy(RUS) was used to determine the natural frequency of a spherical and a aspherical lens. The objective of the paper is to evaluate defect and shape error by using nondestructive evaluation method with Resonant Ultrasound Spectroscopy(RUS). The principle of RUS is that the mechanical resonant frequency of the materials depends on density, and the coefficient of elasticity. We evaluated existence of flaws through comparison with resonant frequency of a spherical and a aspherical lens. The spherical glass lenses were made of BK-7 glass, one's diameter in 2mm and 5mm. The polished spherical glass lenses had no deflection or a deflection below 2.0${\mu}{\textrm}{m}$. Also, The aspherical lens were made of same material and ones diameter in 7mm and thickness in 3.4mm. In the experiment, we were performed to investigate relationship between frequency measuring parameter($\beta$) and mass of each specimens. The difference between resonant frequency and mode of aspherical glass lens which has no defect was distinguished from aspherical glass lens which has some defects.

  • PDF