• Title/Summary/Keyword: Object trajectory

Search Result 272, Processing Time 0.026 seconds

Trajectory Recovery Using Goal-directed Tracking (목표-지향 추적 기법을 이용한 궤적 복원 방법)

  • Oh, Seon Ho;Jung, Soon Ki
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.575-582
    • /
    • 2015
  • Obtaining the complete trajectory of the object is a very important task in computer vision applications, such as video surveillance. Previous studies to recover the trajectory between two disconnected trajectory segments, however, do not takes into account the object's motion characteristics and uncertainty of trajectory segments. In this paper, we present a novel approach to recover the trajectory between two disjoint but associated trajectory segments, called goal-directed tracking. To incorporate the object's motion characteristics and uncertainty, the goal-directed state equation is first introduced. Then the goal-directed tracking framework is constructed by integrating the equation to the object tracking and trajectory linking process pipeline. Evaluation on challenging dataset demonstrates that proposed method can accurately recover the missing trajectory between two disconnected trajectory segments as well as appropriately constrain a motion of the object to the its goal(or the target state) with uncertainty.

A Capturing Algorithm of Moving Object using Single Curvature Trajectory (단일곡률궤적을 이용한 이동물체의 포획 알고리즘)

  • Choi Byoung-Suk;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.145-153
    • /
    • 2006
  • An optimal capturing trajectory for a moving object is proposed in this paper based on the observation that a single-curvature path is more accurate than double-or triple-curvature paths. Moving distance, moving time, and trajectory error are major factors considered in deciding an optimal path for capturing the moving object. That is, the moving time and distance are minimized while the trajectory error is maintained as small as possible. The three major factors are compared for the single and the double curvature trajectories to show superiority of the single curvature trajectory. Based upon the single curvature trajectory, a kinematics model of a mobile robot is proposed to follow and capture the moving object, in this paper. A capturing scenario can be summarized as follows: 1. Motion of the moving object has been captured by a CCD camera., 2. Position of the moving object has been estimated using the image frames, and 3. The mobile robot tries to follow the moving object along the single curvature trajectory which matches positions and orientations of the moving object and the mobile robot at the final moment. Effectiveness of the single curvature trajectory modeling and capturing algorithm has been proved, through simulations and real experiments using a 2-DOF wheel-based mobile robot.

Optimal Trajectory Planning for Capturing a Mobile Object (이동물체 포획을 위한 최적 경로 계획)

  • 황철호;이상헌;조방현;이장명
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.696-702
    • /
    • 2004
  • An optimal trajectory generation algorithm for capturing a moving object by a mobile robot in real-time is proposed in this paper. The linear and rotational velocities of the moving object are estimated using the Kalman filter, as a state estimator. For the estimation, the moving object is tracked by a 2-DOF active camera mounted on the mobile robot, which enables a mobile manipulator to track the mobile robot until the capturing moment. The optimal trajectory for capturing the moving object is dependent on the initial conditions of the mobile robot as well as the moving object. Therefore, real-time trajectory planning for the mobile robot is definitely required for the successful capturing of the moving object. The performance of proposed algorithm is verified through the real experiments and the superiority is demonstrated by comparing to other algorithms.

Moving Object Following by a Mobile Robot using a Single Curvature Trajectory and Kalman Filters (단일곡률궤적과 칼만필터를 이용한 이동로봇의 동적물체 추종)

  • Lim, Hyun-Seop;Lee, Dong-Hyuk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.599-604
    • /
    • 2013
  • Path planning of mobile robots has a purpose to design an optimal path from an initial position to a target point. Minimum driving time, minimum driving distance and minimum driving error might be considered in choosing the optimal path and are correlated to each other. In this paper, an efficient driving trajectory is planned in a real situation where a mobile robot follows a moving object. Position and distance of the moving object are obtained using a web camera, and the rotation angular and linear velocities are estimated using Kalman filters to predict the trajectory of the moving object. Finally, the mobile robot follows the moving object using a single curvature trajectory by estimating the trajectory of the moving object. Using the estimation by Kalman filters and the single curvature in the trajectory planning, the total tracking distance and time saved amounts to about 7%. The effectiveness of the proposed algorithm has been verified through real tracking experiments.

OPTIMAL ROUTE DETERMINATION TECHNOLOGY BASED ON TRAJECTORY QUERYING MOVING OBJECT DATABASE

  • Min Kyoung-Wook;Kim Ju-Wan;Park Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.317-320
    • /
    • 2005
  • The LBS (Location-Based Services) are valuable information services combined the location of moving object with various contents such as map, POI (point of Interest), route and so on. The must general service of LBS is route determination service and its applicable parts are FMS (Fleet Management System), travel advisory system and mobile navigation system. The core function of route determination service is determination of optimal route from source to destination in various environments. The MODB (Moving Object Database) system, core part of LBS composition systems, is able to manage current or past location information of moving object and massive trajectory information stored in MODB is value-added data in CRM, ERP and data mining part. Also this past trajectory information can be helpful to determine optimal route. In this paper, we suggest methods to determine optimal route by querying past trajectory information in MODB system and verify the effectiveness of suggested method.

  • PDF

aCN-RB-tree: Constrained Network-Based Index for Spatio-Temporal Aggregation of Moving Object Trajectory

  • Lee, Dong-Wook;Baek, Sung-Ha;Bae, Hae-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.5
    • /
    • pp.527-547
    • /
    • 2009
  • Moving object management is widely used in traffic, logistic and data mining applications in ubiquitous environments. It is required to analyze spatio-temporal data and trajectories for moving object management. In this paper, we proposed a novel index structure for spatio-temporal aggregation of trajectory in a constrained network, named aCN-RB-tree. It manages aggregation values of trajectories using a constraint network-based index and it also supports direction of trajectory. An aCN-RB-tree consists of an aR-tree in its center and an extended B-tree. In this structure, an aR-tree is similar to a Min/Max R-tree, which stores the child nodes' max aggregation value in the parent node. Also, the proposed index structure is based on a constrained network structure such as a FNR-tree, so that it can decrease the dead space of index nodes. Each leaf node of an aR-tree has an extended B-tree which can store timestamp-based aggregation values. As it considers the direction of trajectory, the extended B-tree has a structure with direction. So this kind of aCN-RB-tree index can support efficient search for trajectory and traffic zone. The aCN-RB-tree can find a moving object trajectory in a given time interval efficiently. It can support traffic management systems and mining systems in ubiquitous environments.

Imitation Learning of Bimanual Manipulation Skills Considering Both Position and Force Trajectory (힘과 위치를 동시에 고려한 양팔 물체 조작 솜씨의 모방학습)

  • Kwon, Woo Young;Ha, Daegeun;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.20-28
    • /
    • 2013
  • Large workspace and strong grasping force are required when a robot manipulates big and/or heavy objects. In that situation, bimanual manipulation is more useful than unimanual manipulation. However, the control of both hands to manipulate an object requires a more complex model compared to unimanual manipulation. Learning by human demonstration is a useful technique for a robot to learn a model. In this paper, we propose an imitation learning method of bimanual object manipulation by human demonstrations. For robust imitation of bimanual object manipulation, movement trajectories of two hands are encoded as a movement trajectory of the object and a force trajectory to grasp the object. The movement trajectory of the object is modeled by using the framework of dynamic movement primitives, which represent demonstrated movements with a set of goal-directed dynamic equations. The force trajectory to grasp an object is also modeled as a dynamic equation with an adjustable force term. These equations have an adjustable force term, where locally weighted regression and multiple linear regression methods are employed, to imitate complex non-linear movements of human demonstrations. In order to show the effectiveness our proposed method, a movement skill of pick-and-place in simulation environment is shown.

Trajectory Generation of a Moving Object for a Mobile Robot in Predictable Environment

  • Jin, Tae-Seok;Lee, Jang-Myung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.27-35
    • /
    • 2004
  • In the field of machine vision using a single camera mounted on a mobile robot, although the detection and tracking of moving objects from a moving observer, is complex and computationally demanding task. In this paper, we propose a new scheme for a mobile robot to track and capture a moving object using images of a camera. The system consists of the following modules: data acquisition, feature extraction and visual tracking, and trajectory generation. And a single camera is used as visual sensors to capture image sequences of a moving object. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the active camera. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time trajectory to capture the moving object, the linear and angular velocities are estimated and utilized. The experimental results of tracking and capturing of the target object with the mobile robot are presented.

Spatio-Temporal Index Structure for Trajectory Queries of Moving Objects in Video (비디오에서 이동 객체의 궤적 검색을 위한 시공간 색인구조)

  • Lee, Nak-Gyu;Bok, Kyoung-Soo;Yoo, Jae-Soo;Cho, Ki-Hyung
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.69-82
    • /
    • 2004
  • A moving object has a special feature that it's spatial location, shape and size are changed as time goes. These changes of the object accompany the continuous movement that is called the trajectory. In this paper, we propose an index structure that users can retrieve the trajectory of a moving object with the access of a page. We also propose the multi-complex query that is a new query type for trajectory retrieval. In order to prove the excellence of our method, we compare and analyze the performance for query time and storage space through experiments in various environments. It is shown that our method outperforms the existing index structures when processing spatio-temporal trajectory queries on moving objects.

Trajectory Estimation of a Moving Object using Kohonen Networks

  • Ju, Jin-Hwa;Lee, Dong-Hui;Lee, Jae-Ho;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2033-2036
    • /
    • 2004
  • A novel approach to estimate the real time moving trajectory of an object is proposed in this paper. The object position is obtained from the image data of a CCD camera, while a state estimator predicts the linear and angular velocities of the moving object. To overcome the uncertainties and noises residing in the input data, a Kalman filter and neural networks are utilized. Since the Kalman filter needs to approximate a non-linear system into a linear model to estimate the states, there always exist errors as well as uncertainties again. To resolve this problem, the neural networks are adopted in this approach, which have high adaptability with the memory of the input-output relationship. Kohonen Network(Self-Organized Map) is selected to learn the motion trajectory since it is spatially oriented. The superiority of the proposed algorithm is demonstrated through the real experiments.

  • PDF