• Title/Summary/Keyword: Object reconstruction

Search Result 408, Processing Time 0.031 seconds

Experimental Study of Two-step Phase-shifting Digital Holography based on the Calculated Intensity of a Reference Wave

  • Li, Jun;Pan, Yang Yang;Li, Jiao sheng;Li, Rong;Zheng, Tao
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.230-235
    • /
    • 2014
  • Two-step quadrature phase-shifting digital holography based on the calculated intensity of a reference wave is proposed. In the Mach-Zehnder interferometer (MZI) architecture, the method only records two quadrature-phase holograms, without reference-wave intensity or object-wave intensity measurement, to perform object recoding and reconstruction. When the reference-wave intensity is calculated from the 2D correlation coefficient (CC) method that we presented, the clear reconstruction image can be obtained by some specific algorithm. Its feasibility and validity were verified by a series of experiments with 2D objects and 3D objects. The presented method will be widely used in real-time or dynamic digital holography applications.

Image Reconstruction using Simulated Annealing Algorithm in EIT

  • Kim Ho-Chan;Boo Chang-Jin;Lee Yoon-Joon
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.211-216
    • /
    • 2005
  • In electrical impedance tomography (EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically, the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents a simulated annealing technique as a statistical reconstruction algorithm for the solution of the static EIT inverse problem. Computer simulations with 32 channels synthetic data show that the spatial resolution of reconstructed images by the proposed scheme is improved as compared to that of the mNR algorithm at the expense of increased computational burden.

A SURFACE RECONSTRUCTION METHOD FOR SCATTERED POINTS ON PARALLEL CROSS SECTIONS

  • Kim, Phil-Su
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.2
    • /
    • pp.29-43
    • /
    • 2005
  • We consider a surface reconstruction problem from geometrical points (i.e., points given without any order) distributed on a series of smooth parallel cross sections in ${\mathbb{R}}^3$. To solve the problem, we utilize the natural points ordering method in ${\mathbb{R}}^2$, described in [18], which is a method of reconstructing a curve from a set of sample points and is based on the concept of diffusion motions of a small object from one point to the other point. With only the information of the positions of these geometrical points, we construct an acceptable surface consisting of triangular facets using a heuristic algorithm to link a pair of parallel cross-sections constructed via the natural points ordering method. We show numerical simulations for the proposed algorithm with some sets of sample points.

  • PDF

EIT Image Reconstruction by Simultaneous Perturbation Method

  • Kim, Ho-Chan;Boo, Chang-Jin;Lee, Yoon-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.159-164
    • /
    • 2004
  • In electrical impedance tomography (EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents a simultaneous perturbation method as an image reconstruction algorithm for the solution of the static EIT inverse problem. Computer simulations with the 32 channels synthetic data show that the spatial resolution of reconstructed images by the proposed scheme is improved as compared to that of the mNR algorithm at the expense of increased computational burden.

  • PDF

3D reconstruction using a method of the planar homography from uncalibrated camera

  • Yoon Yong In;Choi Jong Soo;Kwon Jun sik;Kwon Oh Keun
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.804-809
    • /
    • 2004
  • It is essential to calibrate a camera in order to recover 3-dimensional reconstruction from uncalibrated images. This paper proposes a new technique of the camera calibration using a homography between the planar patterns image taken by the camera, which is located at the three planar patterns image. Since the proposed method should be computed from the homography among the three planar patterns from a single image, it is implemented more easily and simply to recover 3D object than the conventional. Experimental results show the performances of the proposed method are the better than the conventional. We demonstrate the examples of 3D reconstruction using the proposed algorithm from image sequence.

  • PDF

A Image Reconstruction Uing Simulated Annealing in Electrical Impedance Tomograghy (시뮬레이티드 어닐링을 이용한 전기임픽던스단층촬영법의 영상복원)

  • Kim Ho-Chan;Boo Chang-Jin;Lee Yoon-Joon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.2
    • /
    • pp.120-127
    • /
    • 2003
  • In electrical impedance tomography(EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents a simulated annealing technique as a statistical reconstruction algorithm for the solution of the static EIT inverse problem. Computer simulations with the 32 channels synthetic data show that the spatial resolution of reconstructed images by the proposed scheme is improved as compared to that of the mNR algorithm or genetic algorithm at the expense of increased computational burden.

Object Tracking Based on Weighted Local Sub-space Reconstruction Error

  • Zeng, Xianyou;Xu, Long;Hu, Shaohai;Zhao, Ruizhen;Feng, Wanli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.871-891
    • /
    • 2019
  • Visual tracking is a challenging task that needs learning an effective model to handle the changes of target appearance caused by factors such as pose variation, illumination change, occlusion and motion blur. In this paper, a novel tracking algorithm based on weighted local sub-space reconstruction error is presented. First, accounting for the appearance changes in the tracking process, a generative weight calculation method based on structural reconstruction error is proposed. Furthermore, a template update scheme of occlusion-aware is introduced, in which we reconstruct a new template instead of simply exploiting the best observation for template update. The effectiveness and feasibility of the proposed algorithm are verified by comparing it with some state-of-the-art algorithms quantitatively and qualitatively.

A Study on Application of Illumination Models for Color Constancy of Objects (객체의 색상 항등성을 위한 조명 모델 응용에 관한 연구)

  • Park, Changmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.1
    • /
    • pp.125-133
    • /
    • 2017
  • Color in an image is determined by illuminant and surface reflectance. So, to recover unique color of object, estimation of exact illuminant is needed. In this study, the illumination models suggested to get the object color constancy with the physical illumination model based on physical phenomena. Their characteristics and application limits are presented and the necessity of an extended illumination model is suggested to get more appropriate object colors recovered. The extended illumination model should contain an additional term for the ambient light in order to account for spatial variance of illumination in object images. Its necessity is verified through an experiment under simple lighting environment in this study. Finally, a reconstruction method for recovering input images under standard white light illumination is experimented and an useful method for computing object color reflectivity is suggested and experimented which can be induced from combination of the existing illumination models.

The Measurement of 3-D Object Depth Information Using Pattern Projection Method (패턴 투영법을 이용한 3차원 물체의 거리 정보 계측)

  • 김성현;박종훈;최연성;최종수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.9
    • /
    • pp.1402-1409
    • /
    • 1989
  • The algorithm to reconstruct an original 3-D object from a curved object is proposed in this paper. The reconstruction is performed by transforming the recorded image perspectively which is obtained from projecting arbitrary pattern on a curved object. In this paper we make use of the sequence of points, the set of points as a projection pattern of a projected image. The experimental result reveals that this algorithm makes it possible to acquisite 3-D information as well as depth information over the whole 3-D range of the object by measuring the data while convolving the experimental object.

  • PDF