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A SURFACE RECONSTRUCTION METHOD FOR SCATTERED
POINTS ON PARALLEL CROSS SECTIONS

PHILSU KIM

ABSTRACT. We consider a surface reconstruction problem from geometrical points
(i.e., points given without any order) distributed on a series of smooth parallel cross
sections in R3. To solve the problem, we utilize the natural points ordering method
in R?, described in [18], which is a method of reconstructing a curve from a set of
sample points and is based on the concept of diffusion motions of a small object from
one point to the other point. With only the information of the positions of these
geometrical points, we construct an acceptable surface consisting of triangular facets
using a heuristic algorithm to link a pair of parallel cross-sections constructed via the
natural points ordering method. We show numerical simulations for the proposed
algorithm with some sets of sample points.

1. INTRODUCTION

The problem that we treat is to reconstruct a 3D surface from a set of sample
points on a series of parallel planar cross-sections (or called slices) corresponding to
different levels. It occurs from various fields, for instance, medical imaging, digitization
of objects, and GIS systems and so on, and a lot of algorithms with the work of Keppel
[15] as its starting point have been proposed. The problem has been explored in four
major directions: (i) Delaunay triangulation method [2, 3, 8], (ii) partial differential
equation(PDE) method [4, 5, 19] , (iii) optimal method [1, 12, 14, 15], and (iv) heuristic
method [6, 13, 16]. The most general method of them is the Delaunay triangulation
one, which solves the problem in a n-dimensional space for reconstructing a surface
from a set of sample points arbitrarily distributed in space. This does not require any
particular structures such as that the sample points lie on a series of parallel planar
cross-sections, however it is somewhat expensive compared with other methods. The
optimal method and heuristic method are more simple and efficient algorithms than
the Delaunay triangulation one. According to the number of contours in each cross
section and the position of them, these two methodologies have a problem requiring
some meticulous care, so called branching problem. The PDE method is very effective
one to solve the branching problem.
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A common assumption in the methodologies (ii)-(iv) is that the set of sample points
on each cross section are well-ordered, that is, a parametrization on each cross section
is possible. However, it is a far cry from realistic situations, and hence the problem
of reconstructing a curve from a set of scattered sample points on a planar curve is
important to reconstruction methods of a surface. A number of related numerical
results can be found in [7, 9, 10, 11, 17]. Most of these methods are based on the use
of Delaunay triangulation, and give a reasonable curve under a given criterion such as
local feature size.

At most recent, the author [18] developed an efficient method, so called a natural
points ordering method, for solving the problem of reconstructing a curve from a set
of sample points arbitrarily distributed in R?. It consists of defining the order of the
sample points and piecewise edges one by one using only a local decision criterion,
so called a natural distance, which is based on a property of the stochastic process
(Brownian motion) which models diffusing motions of a small object from one point
to the other point. The purpose of this paper is to utilize this algorithm to develop a
heuristic method giving an acceptable surface from a set of sample points on a series
of parallel planar cross-sections.

The rest of this paper is organized as follows. In the first part of section 2, we
precisely describe the problem of interest. We then review the concept of the natural
distance [18] and utilize it to reconstruct each cross-section. The second part of section 2
is devoted to solve the tiling problem between two consecutive cross sections. We
develop a heuristic method which creates triangular patches sequentially by satisfying
a local criterion, so called a smallest inner angle criterion, and then “stitching” all
triangulations together.

In section 3, we execute three numerical simulations for the algorithm and shows the
potentiality of the present algorithm. Finally, we finish the paper with some conclusions
and comments

2. A HEURISTIC METHOD FOR SOLVING TILING PROBLEM

We begin with this section precisely setting up the problem of interest and then
briefly recall the concept of the natural distance and the natural points ordering method
to solve the described problem.

2.1. Setting of the problem. Suppose that there are arbitrarily scattered sample

points p;; = (zi5,Yij,2) on a smooth surface & in R®, where : = 1,2--- , M, j =
1,2,---, N;. Denote the set of all sample points by P and all sample points with level
z=2zasP;,i=1,2--,M, where we assume 2] < zp < --- < zp- We call each set

P, as a cross section or a contour. The problem to solve can then be summarized as
the following questions. For given the set P = U£1 P; of sample points,

e how can we reconstruct a piecewise interpolating curve from the set P; of sample
points with only knowledge of the coordinates p;; = (Zij, ¥ij» 2)7
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FIGURE 1. Contour segment and elementary tile

e how can we connect the p;;’s and p;1x's with straight lines in such a way as to
form a triangular facet(or called an elementary tile) surface spanning two nested
cross sections P; and P;,1? This last question is called a tiling problem.

More concisely, we settle the problem to solve following [13]. A contour segment
is a linear approximation of the curve connecting consecutive points in a single cross
section. An elementary tile(or triangular patches) is a triangular face composed of a
single contour segment and two spans connecting the endpoints of a contour segment
with a common point on the adjacent contour. The spans will be designated as “left”
and “right” for obvious reasons (see Figure 1). Then the problem of reconstructing a
3D surface from a set of sample points on a series of parallel planar cross-sections is to
find a set of elementary tiles which defines a surface satisfying two constraints:

(Cl) Each contour segment will appear in exactly one elementary tile.
(C2) If a span appears as the left(right) span of some tile in the set, it will appear as
the right (left) span exactly one other tile in the set.

A set of tiles which satisfies these two conditions is called an acceptable surface.

As described in the introduction, the main focus of this paper is to utilize the
natural points ordering method reviewed in subsequent subsection and introduce a
new heuristic method for solving the described problem above. Therefore, we consider
only the simple case that the set 7 of sample points satisfies the following restrictions:

e Sample points on each set P; belong to a simple smooth closed curve, which
satisfies a local convexity described in Definition 2.1

e Each cross section P; consists of only one contour. That is, there are no branching
problem.

e For each index i, two consecutive cross section P; and P;;; are so close and
similar-shaped that the situations such as Figure 2 do not occur.

2.2. The natural points ordering method. For given two points p and ¢ in R?
which are already ordered in the direction 5&, the natural distance is an answer to
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(a)

FIGURE 2. (a) Far away situation (b) Dissimilar situation

the question: for each r which is lying on the opposite side of p, centered around the
line perpendicular to P containing g (see Figure 3), how can we construct a distance
between two points ¢ and r which reflects the ‘smoothness’ of the piecewise linear arc
pgr and the ‘closeness’ between g and r simultaneously? In order to give a reasonable
answer, we considered a small object moving from g in the direction of 17& with constant
velocity 1 and simultaneously diffusing randomly on the line which is perpendicular to
fﬁ. A trace of such object corresponds to a graph of sample path of Brownian motion
starting from ¢ when we think of P4 as a directional vector of time axis. The authors[18]
then defined the natural distance f(r) from g to r for directional vector 7l as

@) flr) = tr) + K\;_%,
t(r) = |g|cos6, s(r) = 7|sin?,

where 6 (—% < 0 < %) is the signed angle between p4 and gF defined by cos6 = -%}—'%—'p |'|-Z |
(see Figure 3).

where

Then the first factor ¢(r) was construed as the diffusion time of the small object
from ¢ t? S‘ for directional vector p§ and call it the time distance, while the second
s(r

t(r
from ¢ to r, and the probability that the small object moves from g to r with reaching
time t(r), and call it the standardized probability distance. For a detailed illustration,
one refers to the paper [18]. We call K the subjective weight, since it represents how
much weight is given to the second factor. That is, the larger the subjective weight K
is, the more sensitive than the natural distance it is to the magnitude of the change of

s() than that of the time distance t(-).

V()

factor as the transition density measuring how smoothly moves the small object

the probability distance
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L(r,p,q)

FIGURE 3. New coordinates for a scattered point r with # > 0 based
on two initial points p and ¢

TABLE 1. An algorithm for the natural points ordering method for
given sample points

Step 0. Assumption: A set of sample points S and the first and second ordered points p1
and ps are already given.

Step 1. Let i = 2 and let Ci41 be the set of candidate points of p;+1 consisting of the
points located on the opposite side of p;—1 centering around the line perpendicular to
Pi_1p, containing p;.

Step 2. Set S to be an ordered set with py, pa.

Step 3. Initialize the starting direction vector m and calculate it and ll_h_—l—P”
Step 4. For each candidate point r € Ci;1, calculate g#, t(r) and s(r).

Step 5. Find the next point p;y1 su~ch that piy1 = argmin,.cc,,, f(7).

Step 6. Append the point p;+; to S.

Step 7. Set i to be i + 1 and find the set C;41 of candidate points.

Step 8. If C;4, is nonempty then go to Step 3, otherwise stop.

Using the natural distance described above, the authors [18] developed a method
to solve the curve reconstruction problem in R? so called the natural points ordering
method. It provides an algorithm to us for consecutive myopic choices of sample points
in a natural way. In fact, it is designed to choose the points where the natural distance
from the starting point(chosen one step before) is minimized. The algorithm can be
summarized as in Table 1.

In Table 1, for a unique set S of ordered points, it is sufficient to fulfill the assumption
that in each steps, the new coordinate representations (t(r),s(r)) for each candidate
points in C, are different one another.

2.3. Tiling method. To describe the heuristic method we use, suppose we are given
sample points distributed on two consecutive cross sections P; and P;41 as in section 1
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(a)

FIGURE 4. Local convexity

and these set are well-ordered by the algorithm given in Table 1. Since both cross-
sections are closed, we may think of the points p;; as being extended periodically; i.e.
PiNi+j = Pij» J = 1,2--- , N1. Hereafter, we assume that two consecutive cross sections
P; and P;41 are on a same plane without any special mention.

Definition 2.1. For given two consecutive cross sections P; and P;y1, we say that a
discrete set P;11 has a local convexity with respect to a discrete set P; provided the
following conditions are satisfied: For each contour segment Ly connecting consecutive
points pir and pix+1 in P; with direction m, let c; be the mid point of pi and
pik+1, and Dy(ck) the closed disk with center cy and radius r. Further we denote D7 (ck)
is as the left hand side of Ly and D7 (c) is as the remaining portion of Dy(ck) (see
Figure 4 (a)). Then there exists a positive number & such that for any indez k,

(i) either DF (ck) N Piy1 # 0 or Dy (ck) NP2 # 0; and

(ii) furthermore, the piecewise linear approzimation of the nonempty set is convez

(see Figure 4 (b)).

Here, we say the positive number ¢ as a local convexity radius.

Hereafter, for each i, we assume that the cross-section P;41 has a local convexity
with respect to P; with sufficiently small local convexity radius 4.

For simplicity of descriptions, let i = 1 hereafter, and & be a fixed index. For each
p2j € Po, let P’zj be the end point of the projection vector of ;Eik_m; on the ray containing
the contour segment Ly (See Figure 5). Let Ey be a subset of P, defined by

—
E, = argmax M, k=1,2,---,N;.
1€ Ds(c4)P2 [Fep2j ;|

Then the set E; has the following property;
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FIGURE 5. Projection of p;1;

Theorem 2.2. Assume that § is the smallest radius such that D; (cx) NPy is nonempty

and the linear approzimation of its elements if exists is convex. Then the set Ey is one
of the following cases;

(i) Ey is a set with single element;

(ii) if not the case (i), either the linear approzimation of the set Ey is a part of a
straight line passing through the point ry or there are only two points, say q; and
gj,, such that q;; and q;, are symmetric with respect to the line Ry.

Proof. If the elements of E; are one or two, then the assertion holds clearly. So
we assume that the number of element of Ej is larger than three and the linear ap-
proximation of the set E; is not a part of a straight line. Then there exnst three points
q1, 92,93 € Py such that ¢1,¢92 € Ex and g3 € DJFI’TF’Z\E;C Iflckqg,] > IcquI j=1,2,0r
|Geg3| is larger than one of ]ck—q;I § = 1,2, then either there exist a positive number v
such that D:yF NP, is nonempty and the hnear approximation of its elements is convex,
which is a contradiction to the assumption, or the linear approximation of ¢, ¢z, and
q3 is either concave or a wedge, which is also a contradiction to the assumptlon If
|ckq3] < |ckq]| j = 1,2, then the angle between two vectors 7rch and 7£g5 is less than
that between two vectors 7xcs and 75q;. So

""le “q1q; Tkq3 * 9343

—y — 7

Irraillaigl  |rkgsllgsgs|
which is a contradiction to the fact ¢; € E. O

Using this theorem, we now introduce our heuristic method for solving the tiling
problem. For the simplicity of the notations, we let 7;; be the (i +7)th triangular facet.
Then if the triangle T;; has two vertices in Py, say pu, P41 consecutively, and one
vertex in Py, say pam, (it calls a triangle of Type I), then 5 and j mean 7 = —1 and
j = m, while if T;; has two vertices in Pz, say pa, P2i+1, consecutively, and one vertex
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in Py, say pim, (it calls a triangle of Type II), then i =m —1 and j = [. Further, let
Ty be the Ith vertex of the triangle 7;; with k =1 + j. As described in the following,
we will directly construct the triangles of Type Il from nested two triangles of Type [
without any computation. We are now ready to introduce our algorithm.

Initial step. To construct first triangular facet 7o1, start with 711 = p11 and Ti2 =
pi2. In order to choose the third vertex of To1, consider the set E,. If By is a set with
single element, we choose the third vertex Ti3 of the first triangle as the point in Ey. If
the number of element of E; is more than one, the above theorem shows that either the
linear approximation of the set E; is a part of a straight line passing through the point
ry or there are only two points, say poj; and p2j,, which are symmetric with respect to
the line R;.

If the first case occurs, we let T3 = argminlfﬁ'ﬂ, while if the second case occurs,
geEn

_) .__.__)
we let T}3 = argmax cos™! (M
g€EL |T11||T11 T2

reorder the ordered set P, starting with T13.
Middle steps. Assume that 7’6177'117 e a7-im1’ tte 17;n7 o aﬁnu T 3779-—13’) k> 2,
j > 1 have already been constructed, where T;_1; is a triangle of Type I. Then three
vertices of Tx_1; are pik,P1k+1,P2- In order to find a next triangle facet, we let A =
Pik+1, B = Pig+2 and consider the set Epyi. To find an acceptable surface, we reset
Ej41 by eliminating the points py, with ¢ < j if it exist. Now let C = pge be the points

in Ey4 such that:

). Once the vertex T3 is chosen, then we

o If E;, is a set with single element, we let C' be the point of Exi1;

e If the number of element of Ejy; is more than one, then either the linear ap-
proximation of the set Ejy; is a part of a straight line passing through the
point 7,1 or there are only two points, which are symmetric with respect to
the line Ryy1. If the first case occurs, we let C' be the point such: that C' =
argminlmL while if the second case occurs, we let C be the point such that

quk+1

If e = j, we construct the next triangle as T, with vertices Tiie1 = A, Thye2 = B
and Ty e3 = C. When e > j, first construct triangles of Type II, Tgj, Trjt1, - s The—2s
Tre—1 and then construct a triangle of Type I, Tx.. Repeat these procedures until the
point C = pan,+1 = P21 is chosen. We let the last chosen triangle is Tyn,+1- (See
Figure 6 (a)).

Final step. In the last of the middle steps, if the index f + 1 equals to Ni, stop
the algorithm. Otherwise, construct triangles of Type L TreiNat1s s TNi N2 41 (See
Figure 6 (b)).

This algorithm can be summarized as in Table 2.

C = argmax cos™
g€Er41
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P21 = P2Nx+1

p2.7+10. P2e
. Co N1+1N2+1

PIN,
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FIGURE 6. (a) Triangles of Type II between nested two triangle of Type
I. (b) Triangles of Type I in the final step.

Remark 2.3. For the fized k, if we let
— —}
~1{ TkCk * TkP2j
A(p2;) = cos 1(
(p24) Fectllers)]

then the function A(py;) is the angle between two vectors rkck,a and Tkp2J;'. Further, we
can see that

) ,  p2j € Vo(re) N Pa.,

E, = argmin |A(p2.)|.
p2-€Vp(rk)NP2

In this sense, we call the above algorithm as a smallest inner angle criterion.

Note that the calculation of the set Ej is based on the problem of finding the location
of the point ;. We thus close this section after some discussion for it.

Theorem 2.4. For each k, if we let ry, be the intersection point with the boundary of
Dj (c) and the ray Ry such as in see Figure 5, then it can be expressed as

7 s
re = Cp — 5_‘_{;‘_ — _ P1kP2; * PIkPLE+
AR IPrepre+il?

where py; is any point in the set D;(ck) N Ps.

D1kP1k+1 + D2jP1k>

Proof. Let py; be a point in Dg‘ {ck) NPy and p’2j be its projection onto the line

containing the vector plkplk.*_]_} . Then the vector plkp’zj can be expressed as

~—— _ P1kP2j  PikPik+l ———
PikP2; = ————> 5 P1kPlk+1
|P1kP1E+ 1
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TABLE 2. An algorithm for the tiling problem with given two well-
ordered consecutive cross-sections

Step 0. Assumption: A set of sample points P =P, U ‘P,, where the points in P; are
well-ordered as p;1,- -+ ,Pin:, i = 1,2. Let 6 and 6 be given real numbers.

Step 1. With the starting points py; and p;s, calculate 71, €1 and E;

Step 2. Find the third vertex Ts in E; for the first triangle To1

Step 3. Reorder the set P, starting at T3 and let j =1, k=1.

Step 4. Calculate rg41, Cr+1 and Eg4q.

Step 5. Reset Ejy1 by eliminating the points pac € Ej4y such that ¢ < j if exists.

Step 6. Choose a point pz, € Egy1 such that:

if E;4, is a set with single element, we let p2. be the point of Eg41;

if the piecewise linear approximation of the set E, is a part of a straight line passing

through the point rg41, p2e = argminlqui s
g€EK+1

AT B TYRY T
otherwise py, = argmaxcos™! (plkH I Dik+1P1k+2 )

g€ Ent1 |Pre10l|P1E+1P1E+2]

Step 7. If j = e, construct a triangle 7¢; of Type I, while if e > 7, then first construct
triangles Tij, Tej+1," " The—1 of Type II using the points p2j, P2j+1," " »P2e, Pik+1 and
then the triangle 7. of Type I with vertices pik+1,P15+2,P2e-

Step 8. Put j =eand k=k+ 1.

Step 9. If e < N + 1, then go to Step 4, otherwise go to next step.

Step 10. If k + 1 < Ny + 1, construct triangles Tie, Thtie>" " , Ty using the points
Dik+1,Plk+2," " * »PIN1+1,P2; and then stop. Otherwise, stop.

and hence the point p’2]- is given by

P1kP25 " P1ikP1k4+l —
2 = 2 P1kP1k+1 + Pik-

7 |191lcP1k+1|2
. -
Hence if we let d; = p2;py;, we get
- PikP2,  DLEPIRH ———
dj =py; —P2j = L PLEPLk+1 + Pik — P2j

piepieril®

_ P1kp2§' D1kP1k+] ————y | ———
= ——=———55 P1kPik+1 + P2jP1k-
[D1kD1E+1

. — ST .
Since rxc; = 6d;/|d;|, we can complete the assertion. O

3. SIMULATION RESULTS

As numerical simulations for the proposed heuristic method giving an acceptable
surface, in this section, we consider three examples. First, to illustrate our algorithm,
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Sample Data Ordered Sampie Data
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0.25. 0.25.
L

FIGURE 7. (a) A set of sample points scattered in two convex cross-
sections; (b) A set of ordered sample points (c) Reconstructed surface
from given sample points on two cross-sections

we treat a set of sample points on two simple cross-sections, which are perfectly convex
curve in R3. The second example is a set of sample points on two cross-sections which
are not convex, but satisfy the local convexity. Finally, we consider a set of sample
points arbitrary distributed on a series of parallel cross sections in the unit half-sphere.

Ezample 1. As shown in Figure 7 (a), the considered set of sample points are
scattered on two convex curves. Figure 7 (b) displays the ordered set of sample points
on each cross section obtained by the natural points ordering method. Figure 7 (c)
shows that the presented algorithm gives an acceptable surface. The numbers in each
triangle denote the order of the triangle facets constructed from the algorithm.
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FIGURE 8. (a) Sample points on two cross-sections with elbows (b)
Reconstructed surface

Ezample 2. The sample points to be considered in this example are on two non-
convex cross sections as shown in Figure 8 (a). As shown in the contour graph of the
cross sections, these two cross sections have similar shape with elbows and hence satisfy
the local convexity condition. The proposed algorithm well behavior in this case also
and gives an acceptable surface as shown in Figure 8 (b).

Ezample 3. We consider 20 parallel planner cross sections in the upper hemisphere
with radius 1, where we assume that the cross sections are randomly distributed with
starting cross section in the plane z = 0. If we let the level of each cross section P; as

z;, the sample points in P; are distributed on the level curve 2+ y? =4/1- 2:12 with

step size 7/(15(1 — ;)% + 10) provided 2z; # 1. If z; = 1, the set P; is a single set of
point (0,0,1). Of course, we assume that the sample points in each cross section P;
are randomly distributed. In Figure 9 (a), we show the set of sample points with its
projection onto the plane z = —1. In particular, the graph in the projection of the
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z-axis

FIGURE 9. Sample points on the hemisphere (a), Reconstructed surface
(b) and its view in the bottom of the hemisphere (c)

second figure of Figure 9 (a) is constructed by connecting the sample points with given
order, and it shows that the sample points are randomly distributed. The proposed
algorithm well behavior in this example also and gives an almost perfect hemisphere

surface as shown in Figure 9 (b). Figure 9 (c) is the graph viewed in the bottom
direction of the hemisphere.

4. CONCLUDING REMARK

We develop a heuristic method for reconstructing 3D surface from sample points
arbitrary scattered on a series of parallel planner cross sections, where we assume that
consecutive cross sections are very similar. The method is established by using the
natural points ordering method developed in [18] and a smallest inner angle criterion.



42 PHILSU KIM

This provides us a way to reconstruct and the order of the triangle facets simultaneously.
By stitching all triangle facets together, we can obtain desired or acceptable surfaces.
Numerical simulations say that it can be very efficient to reconstruct an acceptable
surface from unorganized sample points distributed on a series of parallel planner cross
sections.

Although our focus is on reconstructing acceptable surfaces from sample points dis-
tributed on parallel cross sections which are very similar, the method may be extendable
to other situations, for instance, parallel cross sections with dissimilar portion, parallel
cross sections with branching portion and so on. We conjecture that one efficient way
to solve these problems is combining the proposed method and a partial differential
equation method technique. That is, one adopts the present algorithm for the similar
portion of the cross sections, while for the dissimilar portion or the branching portion,
one first models a suitable partial differential equation describing these areas and then
solve it.
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