• Title/Summary/Keyword: Object detection algorithm

Search Result 941, Processing Time 0.025 seconds

Development of an Object Collision Detection Algorithm for Prevention of Collision Accidents on Living Roads (생활도로에서의 충돌사고 예방을 위한 객체 충돌 감지 알고리즘 개발)

  • Seo, Myoung Kook;Shin, Hee Young;Jeong, Hwang Hun;Chae, Jun Seong
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.23-31
    • /
    • 2022
  • Traffic safety issues have recently been seriously magnified, due to child deaths in apartment complexes and parking lots. Accordingly, traffic safety technologies are being developed to recognize dangerous situations on living roads and to provide warning services. In this study, a collision detection algorithm was developed to prevent collision accidents between moving objects, by using object type and location information provided from CCTV monitoring devices. To determine the exact collision between moving objects, an object movement model was developed to predict the range of movement by considering the moving characteristics of the object, and a collision detection algorithm was developed to efficiently analyze the presence and location of the collision. The developed object movement model as well as the collision detection algorithm were simulated, in a virtual space of an actual living road to verify performance and derive supplementary matters.

Real-Time Moving Object Detection and Shadow Removal in Video Surveillance System (비디오 감시 시스템에서 실시간 움직이는 물체 검출 및 그림자 제거)

  • Lee, Young-Sook;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.574-578
    • /
    • 2009
  • Real-time object detection for distinguishing a moving object of interests from the background image in still image or video image sequence is an essential step to a correct object tracking and recognition. Moving cast shadow can be misclassified as part of objects or moving objects because the shadow region is included in the moving object region after object segmentation. For this reason, an algorithm for shadow removal plays an important role in the results of accurate moving object detection and tracking systems. To handle with the problems, an accurate algorithm based on the features of moving object and shadow in color space is presented in this paper. Experimental results show that the proposed algorithm is effective to detect a moving object and to remove shadow in test video sequences.

  • PDF

Advanced Bounding Box Prediction With Multiple Probability Map

  • Lee, Poo-Reum;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.63-68
    • /
    • 2017
  • In this paper, we propose a bounding box prediction algorithm using multiple probability maps to improve object detection result of object detector. Although the performance of object detectors has been significantly improved, it is still not perfect due to technical problems and lack of learning data. Therefore, we use the result correction method to obtain more accurate object detection results. In the proposed algorithm, the preprocessed bounding box created as a result of object detection by the object detector is clustered in various form, and a conditional probability is given to each cluster to make multiple probability map. Finally, multiple probability map create new bounding box of object using morphological elements. Experiment results show that the newly predicted bounding box reduces the error in ground truth more than 45% on average compared to the previous bounding box.

Aerial Object Detection and Tracking based on Fusion of Vision and Lidar Sensors using Kalman Filter for UAV

  • Park, Cheonman;Lee, Seongbong;Kim, Hyeji;Lee, Dongjin
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.232-238
    • /
    • 2020
  • In this paper, we study on aerial objects detection and position estimation algorithm for the safety of UAV that flight in BVLOS. We use the vision sensor and LiDAR to detect objects. We use YOLOv2 architecture based on CNN to detect objects on a 2D image. Additionally we use a clustering method to detect objects on point cloud data acquired from LiDAR. When a single sensor used, detection rate can be degraded in a specific situation depending on the characteristics of sensor. If the result of the detection algorithm using a single sensor is absent or false, we need to complement the detection accuracy. In order to complement the accuracy of detection algorithm based on a single sensor, we use the Kalman filter. And we fused the results of a single sensor to improve detection accuracy. We estimate the 3D position of the object using the pixel position of the object and distance measured to LiDAR. We verified the performance of proposed fusion algorithm by performing the simulation using the Gazebo simulator.

Multi-scale Diffusion-based Salient Object Detection with Background and Objectness Seeds

  • Yang, Sai;Liu, Fan;Chen, Juan;Xiao, Dibo;Zhu, Hairong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4976-4994
    • /
    • 2018
  • The diffusion-based salient object detection methods have shown excellent detection results and more efficient computation in recent years. However, the current diffusion-based salient object detection methods still have disadvantage of detecting the object appearing at the image boundaries and different scales. To address the above mentioned issues, this paper proposes a multi-scale diffusion-based salient object detection algorithm with background and objectness seeds. In specific, the image is firstly over-segmented at several scales. Secondly, the background and objectness saliency of each superpixel is then calculated and fused in each scale. Thirdly, manifold ranking method is chosen to propagate the Bayessian fusion of background and objectness saliency to the whole image. Finally, the pixel-level saliency map is constructed by weighted summation of saliency values under different scales. We evaluate our salient object detection algorithm with other 24 state-of-the-art methods on four public benchmark datasets, i.e., ASD, SED1, SED2 and SOD. The results show that the proposed method performs favorably against 24 state-of-the-art salient object detection approaches in term of popular measures of PR curve and F-measure. And the visual comparison results also show that our method highlights the salient objects more effectively.

Overview of Image-based Object Recognition AI technology for Autonomous Vehicles (자율주행 차량 영상 기반 객체 인식 인공지능 기술 현황)

  • Lim, Huhnkuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1117-1123
    • /
    • 2021
  • Object recognition is to identify the location and class of a specific object by analyzing the given image when a specific image is input. One of the fields in which object recognition technology is actively applied in recent years is autonomous vehicles, and this paper describes the trend of image-based object recognition artificial intelligence technology in autonomous vehicles. The image-based object detection algorithm has recently been narrowed down to two methods (a single-step detection method and a two-step detection method), and we will analyze and organize them around this. The advantages and disadvantages of the two detection methods are analyzed and presented, and the YOLO/SSD algorithm belonging to the single-step detection method and the R-CNN/Faster R-CNN algorithm belonging to the two-step detection method are analyzed and described. This will allow the algorithms suitable for each object recognition application required for autonomous driving to be selectively selected and R&D.

Performance Improvement of Classifier by Combining Disjunctive Normal Form features

  • Min, Hyeon-Gyu;Kang, Dong-Joong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.50-64
    • /
    • 2018
  • This paper describes a visual object detection approach utilizing ensemble based machine learning. Object detection methods employing 1D features have the benefit of fast calculation speed. However, for real image with complex background, detection accuracy and performance are degraded. In this paper, we propose an ensemble learning algorithm that combines a 1D feature classifier and 2D DNF (Disjunctive Normal Form) classifier to improve the object detection performance in a single input image. Also, to improve the computing efficiency and accuracy, we propose a feature selecting method to reduce the computing time and ensemble algorithm by combining the 1D features and 2D DNF features. In the verification experiments, we selected the Haar-like feature as the 1D image descriptor, and demonstrated the performance of the algorithm on a few datasets such as face and vehicle.

A Study on Pedestrians Tracking using Low Altitude UAV (저고도 무인항공기를 이용한 보행자 추적에 관한 연구)

  • Seo, Chang Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.227-232
    • /
    • 2018
  • In this paper, we propose a faster object detection and tracking method using Deep Learning, UAV(unmanned aerial vehicle), Kalman filter and YOLO(You Only Look Once)v3 algorithms. The performance of the object tracking system is decided by the performance and the accuracy of object detecting and tracking algorithms. So we applied to the YOLOv3 algorithm which is the best detection algorithm now at our proposed detecting system and also used the Kalman Filter algorithm that uses a variable detection area as the tracking system. In the experiment result, we could find the proposed system is an excellent result more than a fixed area detection system.

Moving object detection for biped walking robot flatfrom (이족로봇 플랫폼을 위한 동체탐지)

  • Kang, Tae-Koo;Hwang, Sang-Hyun;Kim, Dong-Won;Park, Gui-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.570-572
    • /
    • 2006
  • This paper discusses the method of moving object detection for biped robot walking. Most researches on vision based object detection have mostly focused on fixed camera based algorithm itself. However, developing vision systems for biped walking robot is an important and urgent issue since hired walking robots are ultimately developed not only for researches but to be utilized in real life. In the research, method for moving object detection has been developed for task assignment and execution of biped robot as well as for human robot interaction (HRI) system. But these methods are not suitable to biped walking robot. So, we suggest the advanced method which is suitable to biped walking robot platform. For carrying out certain tasks, an object detecting system using modified optical flow algorithm by wireless vision camera is implemented in a biped walking robot.

  • PDF

Robust Real-time Detection of Abandoned Objects using a Dual Background Model

  • Park, Hyeseung;Park, Seungchul;Joo, Youngbok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.771-788
    • /
    • 2020
  • Detection of abandoned objects for smart video surveillance should be robust and accurate in various situations with low computational costs. This paper presents a new algorithm for abandoned object detection based on the dual background model. Through the template registration of a candidate stationary object and presence authentication methods presented in this paper, we can handle some complex cases such as occlusions, illumination changes, long-term abandonment, and owner's re-attendance as well as general detection of abandoned objects. The proposed algorithm also analyzes video frames at specific intervals rather than consecutive video frames to reduce the computational overhead. For performance evaluation, we experimented with the algorithm using the well-known PETS2006, ABODA datasets, and our video dataset in a live streaming environment, which shows that the proposed algorithm works well in various situations.